Psychometrika

, Volume 77, Issue 1, pp 31–47

A flexible latent trait model for response times in tests

Article
  • 419 Downloads

Abstract

Latent trait models for response times in tests have become popular recently. One challenge for response time modeling is the fact that the distribution of response times can differ considerably even in similar tests. In order to reduce the need for tailor-made models, a model is proposed that unifies two popular approaches to response time modeling: Proportional hazard models and the accelerated failure time model with log–normally distributed response times. This is accomplished by resorting to discrete time. The categorization of response time allows the formulation of a response time model within the framework of generalized linear models by using a flexible link function. Item parameters of the proposed model can be estimated with marginal maximum likelihood estimation. Applicability of the proposed approach is demonstrated with a simulation study and an empirical application. Additionally, means for the evaluation of model fit are suggested.

Keywords

response time proportional hazard model accelerated failure time model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranda-Ordaz, F.J. (1981). On two families of transformations to additivity for binary response data. Biometrika, 68, 357–363. CrossRefGoogle Scholar
  2. Bartholomew, D., & Knott, M. (1999). Latent variable models and factor analysis. London: Arnold. Google Scholar
  3. Berger, M. (1997). Optimal designs for latent variable models: a review. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 71–79). Münster: Waxmann. Google Scholar
  4. Berger, M. (1998). Optimal design of tests with dichotomous and polytomous items. Applied Psychological Measurement, 22, 248–258. CrossRefGoogle Scholar
  5. Borkenau, P., & Ostendorf, F. (1993). NEO-Fünf-Faktoren Inventar (NEO-FFI) nach Costa und McCrae. Göttingen: Hogrefe. Google Scholar
  6. Bos, C. (2002). A comparison of marginal likelihood computation methods (Tinbergen Institute Discussion Paper No. TI2002-084/4). Amsterdam: Vrije Universiteit. Google Scholar
  7. Bradburn, M., Clark, T., Love, S., & Altman, D. (2003). Survival analysis Part II: Multivariate data analysis: an introduction to concepts and methods. British Journal of Cancer, 89, 431–436. PubMedCrossRefGoogle Scholar
  8. Cowan, N., Elliott, E.M., Saults, J.S., Morey, C.C., Mattox, S., Hismjatullina, A., et al. (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100. PubMedCrossRefGoogle Scholar
  9. Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, B, 34, 187–220. Google Scholar
  10. Czado, C. (1994). Parametric link modification of both tails in binary regression. Statistical Papers, 35, 189–201. CrossRefGoogle Scholar
  11. DeMars, C. (2005). Type I error rates for Parscale’s fit index. Educational and Psychological Measurement, 65, 42–50. CrossRefGoogle Scholar
  12. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1–38. Google Scholar
  13. Doksum, K. (1987). An extension of partial likelihood methods for proportional hazard models to general transformation models. The Annals of Statistics, 15, 325–345. CrossRefGoogle Scholar
  14. Doksum, K., & Gasko, M. (1990). On a correspondence between models in binary regression analysis and in survival analysis. International Statistical Review, 58, 243–252. CrossRefGoogle Scholar
  15. Douglas, J., Kosorok, M., & Chewing, B. (1999). A latent variable model for discrete multivariate psychometric waiting times. Psychometrika, 64, 69–82. CrossRefGoogle Scholar
  16. Evans, M., & Swartz, T. (1995). Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statistical Science, 10, 254–272. CrossRefGoogle Scholar
  17. Eysenck, H., Wilson, C., & Jackson, C. (1998). Eysenck Personality Profiler (EPP-D). Frankfurt: Swets. Google Scholar
  18. Fleming, T., & Lin, D. (2000). Survival analysis in clinical trials: past developments and future directions. Biometrics, 56, 971–983. PubMedCrossRefGoogle Scholar
  19. Furneaux, W. (1952). Some speed, error and difficulty relationships within a problem-solving situation. Nature, 170, 37–38. CrossRefGoogle Scholar
  20. Heath, J.W., Fu, M.C., & Jank, W. (2009). New global optimization algorithms for model-based clustering. Computational Statistics & Data Analysis, 53, 3999–4017. CrossRefGoogle Scholar
  21. Heinzmann, D. (2008). A filtered polynomial approach to density estimation. Computational Statistics, 23, 343–360. CrossRefGoogle Scholar
  22. Kang, T., & Chen, T. (2008). Performance of the generalized SX 2 item fit index for polytomous IRT models. Journal of Educational Measurement, 45, 391–406. CrossRefGoogle Scholar
  23. Klein Entink, R., van der Linden, W., & Fox, J. (2009). A Box–Cox normal model for response times. British Journal of Mathematical and Statistical Psychology, 62, 621–640. PubMedCrossRefGoogle Scholar
  24. Luck, S.J., & Vogel, E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. PubMedCrossRefGoogle Scholar
  25. Maris, E. (1993). Additive and multiplicative models for gamma distributed random variables, and their application as psychometric models for response times. Psychometrika, 58, 445–469. CrossRefGoogle Scholar
  26. Marubini, E., & Valsecchi, M. (1995). Analysing survival data from clinical trials and observational studies. Chichester: Wiley. Google Scholar
  27. Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713–732. CrossRefGoogle Scholar
  28. McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society, B, 42, 109–142. Google Scholar
  29. Meng, X., & Rubin, D. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80, 267–278. CrossRefGoogle Scholar
  30. Micko, H. (1969). A psychological scale for reaction time measurement. Acta Psychologica, 30, 324–335. CrossRefGoogle Scholar
  31. Moran, P. (1971). Maximum-likelihood estimation in non-standard conditions. Mathematical Proceedings of the Cambridge Philosophical Society, 70, 441–451. CrossRefGoogle Scholar
  32. Muraki, E., & Bock, R.D. (1997). Parscale: IRT item analysis and test scoring for rating-scale data. Chicago: Scientific Software. [Computer software] Google Scholar
  33. Nelder, J., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313. Google Scholar
  34. Nettleton, D. (1999). Convergence properties of the EM algorithm in constrained parameter spaces. The Canadian Journal of Statistics, 27, 639–648. CrossRefGoogle Scholar
  35. Orchard, T., & Woodbury, M. (1972). A missing information principle: theory and applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1, 697–715. Google Scholar
  36. Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50–64. CrossRefGoogle Scholar
  37. Parner, E. (1997). Inference in semiparametric frailty models. Unpublished doctoral dissertation, University of Aarhus, Arhus, Denmark. Google Scholar
  38. Pregibon, D. (1980). Goodness of link tests for generalized linear models. Journal of the Royal Statistical Society, Series C, 29, 15–24. Google Scholar
  39. Ramsay, J. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630. CrossRefGoogle Scholar
  40. Rubin, D. (1976). Inference and missing data. Biometrika, 63, 581–592. CrossRefGoogle Scholar
  41. Salavei, V. (2006). Logistic approximation to the normal: the KL rational. Psychometrika, 71, 763–767. CrossRefGoogle Scholar
  42. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17, 1–100. Google Scholar
  43. Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms. Journal of Mathematical Psychology, 19, 19–38. CrossRefGoogle Scholar
  44. Schilling, S., & Bock, R. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70, 533–555. Google Scholar
  45. Schnipke, D., & Scrams, D. (2002). Exploring issues of examinee behavior: insights gaines from response-time analyses. In C. Mills, M. Potenza, J. Fremer, & W. Ward (Eds.), Computer-based testing: building the foundation for future assessments (pp. 237–266). Mahwah: Lawrence Erlbaum. Google Scholar
  46. Self, S., & Liang, K. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610. CrossRefGoogle Scholar
  47. Stroud, A. (1971). Approximate calculation of multiple integrals. Englewood Cliffs: Prentice-Hall. Google Scholar
  48. Therneau, T., & Grambsch, P. (2000). Modeling survival data: extending the Cox model. New York: Springer. Google Scholar
  49. van Breukelen, G. (1995). Psychometric and information processing properties of selected response time models. Psychometrika, 60, 95–113. CrossRefGoogle Scholar
  50. van Breukelen, G. (1997). Separability of item and person parameters in response time models. Psychometrika, 62, 525–544. CrossRefGoogle Scholar
  51. van der Linden, W. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31, 181–204. CrossRefGoogle Scholar
  52. van der Linden, W. (2009). Conceptual issues in response-time modeling. Journal of Educational Measurement, 46, 247–272. CrossRefGoogle Scholar
  53. van der Linden, W., Klein Entink, R., & Fox, J. (2010). IRT parameter estimation with response times as collateral information. Applied Psychological Measurement, 34, 327–347. CrossRefGoogle Scholar
  54. van der Maas, H., & Wagenmakers, E. (2005). A psychometric analysis of chess expertise. American Journal of Psychology, 118, 29–60. PubMedGoogle Scholar
  55. Vorberg, D., & Schwarz, W. (1990). Rasch-representable reaction time distributions. Psychometrika, 55, 617–632. CrossRefGoogle Scholar
  56. Wenger, M., & Gibson, B. (2004). Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm. Journal of Experimental Psychology, 30, 708–719. PubMedGoogle Scholar
  57. Woods, C. (2007). Ramsay curve IRT for Likert-type data. Applied Psychological Measurement, 31, 195–212. CrossRefGoogle Scholar
  58. Wu, C.F.J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, 11, 95–103. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2011

Authors and Affiliations

  1. 1.University of GiessenGiessenGermany
  2. 2.University of MunsterMunsterGermany

Personalised recommendations