, Volume 76, Issue 3, pp 487–503 | Cite as

A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments

  • T. LoeysEmail author
  • Y. Rosseel
  • K. Baten


In the psycholinguistic literature, reaction times and accuracy can be analyzed separately using mixed (logistic) effects models with crossed random effects for item and subject. Given the potential correlation between these two outcomes, a joint model for the reaction time and accuracy may provide further insight. In this paper, a Bayesian hierarchical framework is proposed that allows estimation of the correlation between time intensity and difficulty at the item level, and between speed and ability at the subject level. The framework is shown to be flexible in that reaction times can follow a (log-) normal or (shifted) Weibull distribution. A simulation study reveals the reduction in bias gains possible when using joint models, and an analysis of an example from a Dutch–English word recognition study illustrates the proposed method.


joint modeling Bayesian estimation reaction time psycholinguistic experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baayen, R.H., Davidson, D.J., & Bates, D.M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412. CrossRefGoogle Scholar
  2. Baten, K., Hofman, F., & Loeys, T. (2011, in press). Cross-lingual activation in bilingual sentence processing: the role of word class meaning. Bilingualism: Language and Cognition. Google Scholar
  3. Bates, D.M., & Sarkar, D. (2007). lme4: linear mixed-effects models using S4 classes (version 0.9975-12) [R software package]. Retrieved from
  4. Bloxom, B. (1985). Considerations in psychometric modeling of response time. Psychometrika, 50, 383–397. CrossRefGoogle Scholar
  5. Carlin, B.P., & Louis, T.A. (2000). Bayes and empirical Bayes methods of data analysis (2nd ed.). Boca Raton: Chapman and Hall. CrossRefGoogle Scholar
  6. Clark, H.H. (1973). The language-as-fixed-effect fallacy: a critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335–359. CrossRefGoogle Scholar
  7. Entink, R.H.K., Hornke, L.F., Kuhn, J.-T., & Fox, J.-P. (2009). Evaluating cognitive theory: a joint modeling approach using responses and response times. Psychological Methods, 14, 54–75. CrossRefGoogle Scholar
  8. Farrell, S., & Ludwig, C.J.H. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. Psychonomic Bulletin & Review, 15, 1209–1217. CrossRefGoogle Scholar
  9. Jaeger, F.T. (2008). Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446. PubMedCrossRefGoogle Scholar
  10. Lunn, D.J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian modelling framework: concepts, structure and extensibility. Statistics and Computing, 10, 325–337. CrossRefGoogle Scholar
  11. Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken: Wiley. CrossRefGoogle Scholar
  12. Raaijmakers, J.G.W., Schrijnemakers, J.M.C., & Gremmen, F. (1999). How to deal with “The language-as-fixed-effect fallacy”: common misconceptions and alternative solutions. Journal of Memory and Language, 41, 416–426. CrossRefGoogle Scholar
  13. Raudenbush, S.W. (1993). A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research. Journal of Educational Statistics, 18, 321–349. CrossRefGoogle Scholar
  14. R Development Core Team (2009). R: a language and environment for statistical computing. Retrieved from
  15. Rouder, J., Sun, D., Speckmanm, P.L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589–606. CrossRefGoogle Scholar
  16. Rouder, J., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604. CrossRefGoogle Scholar
  17. Rouder, J., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-Benjamin, M. (2007). Signal detection with random participant and item effects. Psychometrika, 72(4), 621–642. CrossRefGoogle Scholar
  18. Rouder, J., Lu, J., Morey, R., Sun, D., & Speckman, P. (2008a). A hierarchical process-dissociation model. Journal of Experimental Psychology: General, 137(2), 370–389. CrossRefGoogle Scholar
  19. Rouder, J., Tuerlinckx, F., Speckman, P., Lu, J., & Gomez, P. (2008b). A hierarchical approach for fitting curves to response time measurements. Psychonomic Bulletin & Review, 15(6), 1201–1208. CrossRefGoogle Scholar
  20. Spiegelhalter, D.J., Best, N.G., Carlin, B., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Ser. B, 64, 586–639. CrossRefGoogle Scholar
  21. Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software, 12(3), 1–16. Google Scholar
  22. Van Breukelen, G. (2005). Psychometric modeling of response speed and accuracy with mixed and conditional regression. Psychometrika, 70(2), 359–376. CrossRefGoogle Scholar
  23. Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F. (2010). A crossed random effects diffusion model for speeded semantic categorization decisions. Acta Psychologica, 133, 269–282. PubMedCrossRefGoogle Scholar
  24. Van der Linden, W. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181–204. CrossRefGoogle Scholar
  25. Van der Linden, W. (2007). A hierarchical framework for speed and accuracy on test items. Psychometrika, 72(3), 287–308. CrossRefGoogle Scholar
  26. Van der Linden, W. (2009). Conceptual issues in response-time modeling. Journal of Educational Measurement, 46(3), 247–272. CrossRefGoogle Scholar
  27. Van der Linden, W. (2010). Linking response-time parameters onto a common scale. Journal of Educational Measurement, 47(1), 92–114. CrossRefGoogle Scholar
  28. Wenger, M.J., & Gibson, B.S. (2004). Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm. Journal of Experimental Psychology, 30(4), 708–719. PubMedGoogle Scholar

Copyright information

© The Psychometric Society 2011

Authors and Affiliations

  1. 1.Ghent UniversityGhentBelgium

Personalised recommendations