, Volume 76, Issue 2, pp 179–199 | Cite as

The Generalized DINA Model Framework

  • Jimmy de la Torre


The G-DINA (generalized deterministic inputs, noisyandgate) model is a generalization of the DINA model with more relaxed assumptions. In its saturated form, the G-DINA model is equivalent to other general models for cognitive diagnosis based on alternative link functions. When appropriate constraints are applied, several commonly used cognitive diagnosis models (CDMs) can be shown to be special cases of the general models. In addition to model formulation, the G-DINA model as a general CDM framework includes a component for item-by-item model estimation based on design and weight matrices, and a component for item-by-item model comparison based on the Wald test. The paper illustrates the estimation and application of the G-DINA model as a framework using real and simulated data. It concludes by discussing several potential implications of and relevant issues concerning the proposed framework.


cognitive diagnosis DINA MMLE parameter estimation Wald test model comparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B.N., & Csaki, F. (Eds.) Proceedings of the second international symposium on information theory (pp. 267–281). Budapest: Akad. Kiado. Google Scholar
  2. de la Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: development and applications. Journal of Educational Measurement, 45, 343–362. CrossRefGoogle Scholar
  3. de la Torre, J. (2009a). A cognitive diagnosis model for cognitively-based multiple-choice options. Applied Psychological Measurement, 33, 163–183. CrossRefGoogle Scholar
  4. de la Torre, J. (2009b). DINA model and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics, 34, 115–130. CrossRefGoogle Scholar
  5. de la Torre, J., & Douglas, J. (2004). A higher-order latent trait model for cognitive diagnosis. Psychometrika, 69, 333–353. CrossRefGoogle Scholar
  6. de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: an analysis of fraction subtraction data. Psychometrika, 73, 595–624. CrossRefGoogle Scholar
  7. Doornik, J.A. (2003). Object-oriented matrix programming using Ox (version 3.1) [Computer software]. London: Timberlake Consultants Press. Google Scholar
  8. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374. CrossRefGoogle Scholar
  9. Fischer, G.H. (1997). Unidimensional linear logistic Rasch models. In van der Linden, W., & Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 225–244). New York: Springer. Google Scholar
  10. Hagenaars, J.A. (1990). Categorical longitudinal data: loglinear panel, trend, and cohort analysis. Thousand Oaks: Sage. Google Scholar
  11. Hagenaars, J.A. (1993). Loglinear models with latent variables. Thousand Oaks: Sage. Google Scholar
  12. Hartz, S.M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: blending theory with practicality. Unpublished doctoral dissertation. Google Scholar
  13. Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210. CrossRefGoogle Scholar
  14. Jaeger, J., Tatsuoka, C., & Berns, S. (2003). Innovative methods for extracting valid cognitive deficit profiles from NP test data in schizophrenia. Schizophrenia Research, 60, 140–140. CrossRefGoogle Scholar
  15. Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with non-parametric item response theory. Applied Psychological Measurement, 25, 258–272. CrossRefGoogle Scholar
  16. Lehmann, E.L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer. Google Scholar
  17. Leighton, J.P., Gierl, M.J., & Hunka, S. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–236. CrossRefGoogle Scholar
  18. Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212. CrossRefGoogle Scholar
  19. Millon, T., Millon, C., Davis, R., & Grossman, S. (2006). MCMI-III manual (3rd ed.). Minneapolis: Pearson Assessments. Google Scholar
  20. Rossi, G., Elklit, A., & Simonsen, E. (2010). Empirical evidence for a four factor framework of personality disorder organization: multigroup confirmatory factor analyses of the Millon Clinical Multiaxial Inventory—III personality disorder scales across Belgian and Danish data samples. Journal of Personality Disorders, 24, 128–150. PubMedCrossRefGoogle Scholar
  21. Rossi, G., Sloore, H., & Derksen, J. (2008). The adaptation of the MCMI-III in two non-English-speaking countries: state of the art of the Dutch language version. In Millon, T., & Bloom, C. (Eds.), The Millon inventories: a practitioner’s guide to personalized clinical assessment (2nd ed., pp. 369–386). New York: Guilford. Google Scholar
  22. Rossi, G., van der Ark, L.A., & Sloore, H. (2007). Factor analysis of the Dutch language version of the MCMI-III. Journal of Personality Assessment, 88, 144–157. PubMedGoogle Scholar
  23. Roussos, L.A., DiBello, L.V., Stout, W., Hartz, S.M., Henson, R.A., & Templin, J.L. (2007). The fusion model skills diagnosis system. In Leighton, J.P., & Gierl, M.J. (Eds.), Cognitively diagnostic assessment for education: theory and applications (pp. 275–318). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  24. Stout, W. (2007). Skills diagnosis using IRT-Based continuous latent trait models. Journal of Educational Measurement, 44, 313–324. CrossRefGoogle Scholar
  25. Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 51, 337–350. CrossRefGoogle Scholar
  26. Tatsuoka, C. (2005). Corrigendum: data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 54, 465–467. CrossRefGoogle Scholar
  27. Tatsuoka, K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345–354. CrossRefGoogle Scholar
  28. Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In Frederiksen, N., Glaser, R., Lesgold, A., & Safto, M. (Eds.), Monitoring skills and knowledge acquisition (pp. 453–488). Hillsdale: Erlbaum. Google Scholar
  29. Templin, J., & Henson, R. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305. PubMedCrossRefGoogle Scholar
  30. von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report RR-05-16). Princeton: Educational Testing Service. Google Scholar
  31. von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7, 67–74. Google Scholar
  32. von Davier, M., & Yamamoto, K. (2004, October). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman Conference, Philadelphia, PA. Google Scholar

Copyright information

© The Psychometric Society 2011

Authors and Affiliations

  1. 1.Department of Educational PsychologyRutgers, The State University of New JerseyNew BrunswickUSA

Personalised recommendations