Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Generalized DINA Model Framework

Abstract

The G-DINA (generalized deterministic inputs, noisyandgate) model is a generalization of the DINA model with more relaxed assumptions. In its saturated form, the G-DINA model is equivalent to other general models for cognitive diagnosis based on alternative link functions. When appropriate constraints are applied, several commonly used cognitive diagnosis models (CDMs) can be shown to be special cases of the general models. In addition to model formulation, the G-DINA model as a general CDM framework includes a component for item-by-item model estimation based on design and weight matrices, and a component for item-by-item model comparison based on the Wald test. The paper illustrates the estimation and application of the G-DINA model as a framework using real and simulated data. It concludes by discussing several potential implications of and relevant issues concerning the proposed framework.

This is a preview of subscription content, log in to check access.

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B.N., & Csaki, F. (Eds.) Proceedings of the second international symposium on information theory (pp. 267–281). Budapest: Akad. Kiado.

  2. de la Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: development and applications. Journal of Educational Measurement, 45, 343–362.

  3. de la Torre, J. (2009a). A cognitive diagnosis model for cognitively-based multiple-choice options. Applied Psychological Measurement, 33, 163–183.

  4. de la Torre, J. (2009b). DINA model and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics, 34, 115–130.

  5. de la Torre, J., & Douglas, J. (2004). A higher-order latent trait model for cognitive diagnosis. Psychometrika, 69, 333–353.

  6. de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: an analysis of fraction subtraction data. Psychometrika, 73, 595–624.

  7. Doornik, J.A. (2003). Object-oriented matrix programming using Ox (version 3.1) [Computer software]. London: Timberlake Consultants Press.

  8. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

  9. Fischer, G.H. (1997). Unidimensional linear logistic Rasch models. In van der Linden, W., & Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 225–244). New York: Springer.

  10. Hagenaars, J.A. (1990). Categorical longitudinal data: loglinear panel, trend, and cohort analysis. Thousand Oaks: Sage.

  11. Hagenaars, J.A. (1993). Loglinear models with latent variables. Thousand Oaks: Sage.

  12. Hartz, S.M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: blending theory with practicality. Unpublished doctoral dissertation.

  13. Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

  14. Jaeger, J., Tatsuoka, C., & Berns, S. (2003). Innovative methods for extracting valid cognitive deficit profiles from NP test data in schizophrenia. Schizophrenia Research, 60, 140–140.

  15. Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with non-parametric item response theory. Applied Psychological Measurement, 25, 258–272.

  16. Lehmann, E.L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer.

  17. Leighton, J.P., Gierl, M.J., & Hunka, S. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–236.

  18. Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.

  19. Millon, T., Millon, C., Davis, R., & Grossman, S. (2006). MCMI-III manual (3rd ed.). Minneapolis: Pearson Assessments.

  20. Rossi, G., Elklit, A., & Simonsen, E. (2010). Empirical evidence for a four factor framework of personality disorder organization: multigroup confirmatory factor analyses of the Millon Clinical Multiaxial Inventory—III personality disorder scales across Belgian and Danish data samples. Journal of Personality Disorders, 24, 128–150.

  21. Rossi, G., Sloore, H., & Derksen, J. (2008). The adaptation of the MCMI-III in two non-English-speaking countries: state of the art of the Dutch language version. In Millon, T., & Bloom, C. (Eds.), The Millon inventories: a practitioner’s guide to personalized clinical assessment (2nd ed., pp. 369–386). New York: Guilford.

  22. Rossi, G., van der Ark, L.A., & Sloore, H. (2007). Factor analysis of the Dutch language version of the MCMI-III. Journal of Personality Assessment, 88, 144–157.

  23. Roussos, L.A., DiBello, L.V., Stout, W., Hartz, S.M., Henson, R.A., & Templin, J.L. (2007). The fusion model skills diagnosis system. In Leighton, J.P., & Gierl, M.J. (Eds.), Cognitively diagnostic assessment for education: theory and applications (pp. 275–318). Cambridge: Cambridge University Press.

  24. Stout, W. (2007). Skills diagnosis using IRT-Based continuous latent trait models. Journal of Educational Measurement, 44, 313–324.

  25. Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 51, 337–350.

  26. Tatsuoka, C. (2005). Corrigendum: data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 54, 465–467.

  27. Tatsuoka, K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345–354.

  28. Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In Frederiksen, N., Glaser, R., Lesgold, A., & Safto, M. (Eds.), Monitoring skills and knowledge acquisition (pp. 453–488). Hillsdale: Erlbaum.

  29. Templin, J., & Henson, R. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

  30. von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report RR-05-16). Princeton: Educational Testing Service.

  31. von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7, 67–74.

  32. von Davier, M., & Yamamoto, K. (2004, October). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman Conference, Philadelphia, PA.

Download references

Author information

Correspondence to Jimmy de la Torre.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11336-011-9214-8

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de la Torre, J. The Generalized DINA Model Framework. Psychometrika 76, 179–199 (2011). https://doi.org/10.1007/s11336-011-9207-7

Download citation

Keywords

  • cognitive diagnosis
  • DINA
  • MMLE
  • parameter estimation
  • Wald test
  • model comparison