Psychometrika

, Volume 76, Issue 2, pp 306–317 | Cite as

OpenMx: An Open Source Extended Structural Equation Modeling Framework

  • Steven Boker
  • Michael Neale
  • Hermine Maes
  • Michael Wilde
  • Michael Spiegel
  • Timothy Brick
  • Jeffrey Spies
  • Ryne Estabrook
  • Sarah Kenny
  • Timothy Bates
  • Paras Mehta
  • John Fox
Article

Abstract

OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the R statistical programming environment on Windows, Mac OS–X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are introduced—these novel structures define the user interface framework and provide new opportunities for model specification. Two short example scripts for the specification and fitting of a confirmatory factor model are next presented. We end with an abbreviated list of modeling applications available in OpenMx 1.0 and a discussion of directions for future development.

Keywords

structural equation modeling SEM software open source OpenMx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuckle, J.L. (2009). Amos user’s guide. Chicago: SPSS. Google Scholar
  2. Bentler, P.M. (2009). EQS structural equations program manual. Encino: Multivariate Software. Google Scholar
  3. Browne, M.W., & Mels, G. (2009). RAMONA: SYSTAT for Windows (Computer software manual). Chicago, SYSTAT. Google Scholar
  4. Eaves, L.J., Neale, M.C., & Maes, H.H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behavior Genetics, 26, 519–526. PubMedCrossRefGoogle Scholar
  5. Everitt, B.S., & Hand, D.J. (1981). Finite mixture distributions. London: Chapman and Hall. Google Scholar
  6. Fox, J. (2009). sem: structural equation models (Computer software manual). Available from http://CRAN.R-project.org/package=sem (R package version 0.9–19).
  7. Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. CrossRefGoogle Scholar
  8. Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482. CrossRefGoogle Scholar
  9. Jöreskog, K.G., & Sörbom, D. (2009). LISREL. Chicago: Scientific Software International. Google Scholar
  10. Longford, N.T., & Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581–597. CrossRefGoogle Scholar
  11. Marcoulides, G., & Schumacker, E. (Eds.) (1996). Advanced structural equation modeling. Hillsdale: Erlbaum. Google Scholar
  12. McArdle, J.J., & Hamagami, F. (1996). Multilevel models from a multiple group structural equation perspective. In: G. Marcoulides, & E. Schumacker (Eds.), Advanced structural equation modeling (pp. 89–124). Hillsdale: Erlbaum. Google Scholar
  13. McLachlan, G.J., & Peel, D. (2000). Finite mixture models. New York: Wiley. CrossRefGoogle Scholar
  14. Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8). Google Scholar
  15. Muthén, L.K., & Muthén, B.O. (2009). Mplus user’s guide. Los Angeles: Muthén & Muthén. Google Scholar
  16. Neale, M.C. (1998). Modeling interaction and nonlinear effects with mx: a general approach. In: G. Marcoulides & R. Schumacker (Eds.), Interaction and non-linear effects in structural equation modeling (pp. 43–61). Hillsdale: Erlbaum. Google Scholar
  17. Neale, M.C., Boker, S.M., Xie, G., & Maes, H. (2006). Mx: statistical modeling (7th ed.) Richmond: Department of Psychiatry, Virginia Commonwealth University. Google Scholar
  18. PROC CALIS (Computer software manual). Cary, SAS Institute, Inc. Google Scholar
  19. SEPath (Computer software manual) (2009). Tulsa, StatSoft, Inc. Google Scholar
  20. Sörbom, D. (1974). A general method for studying differences in factor means and factor structures between groups. British Journal of Mathematical & Statistical Psychology, 27, 229–239. Google Scholar
  21. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585. Google Scholar

Copyright information

© The Psychometric Society 2011

Authors and Affiliations

  • Steven Boker
    • 1
  • Michael Neale
    • 2
  • Hermine Maes
    • 3
  • Michael Wilde
    • 3
  • Michael Spiegel
    • 1
  • Timothy Brick
    • 1
  • Jeffrey Spies
    • 1
  • Ryne Estabrook
    • 1
  • Sarah Kenny
    • 3
  • Timothy Bates
    • 4
  • Paras Mehta
    • 5
  • John Fox
    • 6
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Virginia Commonwealth UniversityRichmondUSA
  3. 3.University of Chicago, Argonne National LabsChicagoUSA
  4. 4.University of EdinburghEdindurghUK
  5. 5.University of HoustonHoustonUSA
  6. 6.McMaster UniversityHamiltonCanada

Personalised recommendations