A Boundary Mixture Approach to Violations of Conditional Independence

Abstract

Conditional independence is a fundamental principle in latent variable modeling and item response theory. Violations of this principle, commonly known as local item dependencies, are put in a test information perspective, and sharp bounds on these violations are defined. A modeling approach is proposed that makes use of a mixture representation of these boundaries to account for the local dependence problem by finding a balance between independence on the one side and absolute dependence on the other side. In contrast to alternative approaches, the nature of the proposed boundary mixture model does not necessitate a change in formulation of the typical item characteristic curves used in item response theory. This has attractive interpretational advantages and may be useful for general test construction purposes.

This is a preview of subscription content, log in to check access.

References

  1. Ashford, J.R., & Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535–546.

    PubMed  Article  Google Scholar 

  2. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.M. Lord & M.R. Novick (Eds.), Statistical theories of mental test scores (pp. 397–497). Reading: Addison-Wesley.

    Google Scholar 

  3. Braeken, J., & Tuerlinckx, F. (2009). A mixed model framework for teratology studies. Biostatistics, 10, 744–755.

    PubMed  Article  Google Scholar 

  4. Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copulas for residual dependency. Psychometrika, 72, 393–411.

    Article  Google Scholar 

  5. Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.

    Google Scholar 

  6. Cureton, E.E. (1959). Note on φ/φ max . Psychometrika, 24, 89–91.

    Article  Google Scholar 

  7. Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large-scale hands-on science performance assessment. Journal of Educational Measurement, 36, 119–140.

    Article  Google Scholar 

  8. Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université Lyon: Série 3, 14, 53–77.

    Google Scholar 

  9. Gibbons, R.D., & Hedeker, D.R. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423–436.

    Article  Google Scholar 

  10. Hoeffding, W. (1940). Masstabinvariante Korrelations Theorie. Schriften des Matematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin, 5, 179–223. [Reprinted as Scale-invariant correlation theory in the Collected Works of Wassily Hoeffding, N.I. Fischer, and P.K. Sen (Eds.), New York: Springer.]

    Google Scholar 

  11. Hoskens, M., & De Boeck, P. (1997). A parametric model for local item dependencies among test items. Psychological Methods, 2, 261–277.

    Article  Google Scholar 

  12. Ip, E. (2001). Testing for local dependence in dichotomous and polutomous item response models. Psychometrika, 66, 109–132.

    Article  Google Scholar 

  13. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

    Google Scholar 

  14. Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255–278.

    Article  Google Scholar 

  15. Lazarsfeld, P.F. (1950). The logical and mathematical foundation of latent structure analysis & the interpretation and mathematical foundation of latent structure analysis. In S.A. Stouffer, L. Guttman, E.A. Suchman, P.F. Lazarsfeld, S.A. Star, & J.A. Claussen (Eds.), Measurement and prediction (pp. 7–56). Princeton University Press: Thousand Oaks.

    Google Scholar 

  16. Lord, F.M. (1980). Applications of item response theory to practical testing problems. Mahwah: Erlbaum.

    Google Scholar 

  17. MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107–120.

    Article  Google Scholar 

  18. Masters, G.N. (1988). Item discrimination: when more is worse. Journal of Educational Measurement, 25, 15–29.

    Article  Google Scholar 

  19. Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill.

    Google Scholar 

  20. Nelsen, R.B. (1998). An introduction to copulas. New York: Springer.

    Google Scholar 

  21. Salhi, S. (1998). Heuristic search methods. In G.A. Marcoulides (Ed.), Modern methods for business research (pp. 147–175). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  22. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 7.

  23. Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph Supplement, 18.

  24. Shaffer, J.P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–584.

    Article  Google Scholar 

  25. Sireci, S.G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. Journal of Educational Measurement, 28, 237–247.

    Article  Google Scholar 

  26. Sklar, A. (1959). Fonctions de répartition à n dimension et leurs marges. Publications Statistiques Université de Paris, 8, 229–231.

    Google Scholar 

  27. Steiger, J.H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180.

    Article  Google Scholar 

  28. Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27, 159–203.

    Article  Google Scholar 

  29. Tuerlinckx, F., & De Boeck, P. (2001). Non-modeled item interactions lead to distorted discrimination parameters: A case study. Methods of Psychological Research, 6. [Retrieved May 20, 2005 from http://www.mpr-online.de/issue14/art3/Tuerlinckx.pdf.

  30. Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.

    Article  Google Scholar 

  31. Wainer, H., Bradlow, E., & Wang, X. (2007). Testlet response theory and its applications. Cambridge: Cambridge University Press.

    Google Scholar 

  32. Yen, W.M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125–145.

    Article  Google Scholar 

  33. Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187–213.

    Article  Google Scholar 

  34. Zeger, S.L., Liang, K.-Y., & Albert, P.S. (1988). Models for longitudinal data: A generalized estimation equation approach. Biometrics, 44, 1049–1060.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johan Braeken.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braeken, J. A Boundary Mixture Approach to Violations of Conditional Independence. Psychometrika 76, 57–76 (2011). https://doi.org/10.1007/s11336-010-9190-4

Download citation

Keywords

  • Fréchet–Hoeffding bounds
  • copula function
  • local item dependencies
  • conditional independence