, Volume 75, Issue 1, pp 70–98 | Cite as

Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

  • Karl Christoph KlauerEmail author
Theory and Methods


Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into account and to assess parameter correlations. The model is estimated using Bayesian methods with weakly informative hyperprior distribution and a Gibbs sampler based on two steps of data augmentation. Estimation, model checks, and hypotheses tests are discussed. The new method is illustrated using a real data set, and its performance is evaluated in a simulation study.


multinomial processing tree models hierarchical models Gibbs sampler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, J.H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679. CrossRefGoogle Scholar
  2. Ansari, A., Vanhuele, M., & Zemborain, M. (2008). Heterogeneous multinomial processing tree models. Unpublished manuscript. Columbia University, New York. Google Scholar
  3. Atchison, J., & Shen, S.M. (1980). Logistic-normal distributions: Some properties and uses. Biometrika, 67, 261–272. CrossRefGoogle Scholar
  4. Batchelder, W.H., & Riefer, D.M. (1986). The statistical analysis of a model for storage and retrieval processes in human memory. British Journal of Mathematical and Statistical Psychology, 39, 129–149. Google Scholar
  5. Batchelder, W.H., & Riefer, D.M. (1999). Theoretical and empirical review of multinomial processing tree modeling. Psychonomic Bulletin & Review, 6, 57–86. Google Scholar
  6. Batchelder, W.H., & Riefer, D.M. (2007). Using multinomial processing tree models to measure cognitive deficits in clinical populations. In R.W.T. Neufeld (Ed.), Advances in clinical cognitive science: formal analysis of processes and symptoms (pp. 19–50). Washington: American Psychological Association Books. CrossRefGoogle Scholar
  7. Bayarri, M.J., & Berger, J.O. (1999). Quantifying surprise in the data and model verification. Bayesian Statistics, 6, 53–83. Google Scholar
  8. Boomsma, A., van Duijn, M.A.J., & Snijders, T.A.B. (Eds.) (2000). Essays on item response theory. New York: Springer. Google Scholar
  9. Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics. Google Scholar
  10. Erdfelder, E. (2000). Multinomiale Modelle in der kognitiven Psychologie [Multinomial models in cognitive psychology]. Unpublished habilitation thesis, Psychologisches Institut der Universität Bonn, Germany Google Scholar
  11. Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analyses (2nd ed.). Boca Raton: Chapman & Hall/CRC. Google Scholar
  12. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press. Google Scholar
  13. Gill, J. (2008). Bayesian methods: A social and behavioral sciences approach (2nd ed.). Boca Raton: Chapman & Hall/CRC. Google Scholar
  14. Hu, X., & Batchelder, W.H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21–47. CrossRefGoogle Scholar
  15. Karabatsos, G., & Batchelder, W.H. (2003). Markov chain estimation methods for test theory without an answer key. Psychometrika, 68, 373–389. CrossRefGoogle Scholar
  16. Klauer, K.C. (2006). Hierarchical multinomial processing tree models: a latent-class approach. Psychometrika, 71, 1–31. CrossRefGoogle Scholar
  17. O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics: Volume 2B: Bayesian inference London: Arnold. Google Scholar
  18. Rao, C.R. (1973). Linear statistical inference and its applications. New York: Wiley. CrossRefGoogle Scholar
  19. Riefer, D.M., & Batchelder, W.H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318–339. CrossRefGoogle Scholar
  20. Riefer, D.M., & Batchelder, W.H. (1991). Age differences in storage and retrieval: a multinomial modeling analysis. Bulletin of the Psychonomic Society, 29, 415–418. Google Scholar
  21. Robert, P.C. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121–125. CrossRefGoogle Scholar
  22. Raudenbush, S.W., & Bryk, A.S. (2002). In Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks: Sage Publications. Google Scholar
  23. Rouder, J.N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604. Google Scholar
  24. Rouder, J.N., Lu, J., Morey, R.D., Sun, D., & Speckman, P.L. (2008). A hierarchical process-dissociation model. Journal of Experimental Psychology: General, 137, 370–389. CrossRefGoogle Scholar
  25. Smith, J.B., & Batchelder, H.W. (2008). Assessing individual differences in categorical data. Psychonomic Bulletin & Review, 15, 713–731. CrossRefGoogle Scholar
  26. Smith, J., & Batchelder, W. (2009, in press). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology. Google Scholar
  27. Stahl, C., & Klauer, K.C. (2007). HMMTree: A computer program for latent-class hierarchical multinomial processing tree models. Behavior Research Methods, 39, 267–273. PubMedGoogle Scholar
  28. Stefanescu, C., Berger, V.W., & Hershberger, S. (2005). Probits. In B.S. Everitt & D.C. Howell (Eds.), The encyclopedia of statistics in behavioral science (Vol. 4, pp. 1608–1610). Chichester: Wiley. Google Scholar
  29. Tuyl, F., Gerlach, R., & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis, 4, 151–158. CrossRefGoogle Scholar
  30. Wei, G.C.G., & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85, 699–704. CrossRefGoogle Scholar
  31. Zhu, M., & Lu, A.Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12. Retrieved June 19, 2009, from

Copyright information

© The Psychometric Society 2009

Authors and Affiliations

  1. 1.Institut für PsychologieUniversität FreiburgFreiburgGermany

Personalised recommendations