Psychometrika

, Volume 74, Issue 3, pp 395–418 | Cite as

A Hierarchical Ornstein–Uhlenbeck Model for Continuous Repeated Measurement Data

  • Zita Oravecz
  • Francis Tuerlinckx
  • Joachim Vandekerckhove
Article

Abstract

In this paper, we present a diffusion model for the analysis of continuous-time change in multivariate longitudinal data. The central idea is to model the data from a single person with an Ornstein–Uhlenbeck diffusion process. We extend it hierarchically by allowing the parameters of the diffusion process to vary randomly over different persons. With this approach, both intra and interindividual differences are analyzed simultaneously. Furthermore, the individual difference parameters can be regressed on covariates, thereby providing an explanation of between-person differences. Unstructured and unbalanced data pose no problem for the model to be applied. We demonstrate the method on data from an experience sampling study to investigate changes in the core affect. It can be concluded that different factors from the five factor model of personality are related to features of the trajectories in the core affect space, such as the cross-correlation and variability of the changes.

Keywords

Ornstein–Uhlenbeck process Hierarchical Multivariate Bayesian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: Wiley. Google Scholar
  2. Barnard, J., McCulloch, R.E., & Meng, X.L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281–1311. Google Scholar
  3. Blackwell, P.G. (1997). Random diffusion models for animal movements. Ecological Modelling, 100, 87–102. CrossRefGoogle Scholar
  4. Blackwell, P.G. (2003). Bayesian inference for Markov processes with diffusion and discrete components. Biometrika, 90, 613–627. CrossRefGoogle Scholar
  5. Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579–616. PubMedCrossRefGoogle Scholar
  6. Bollen, K.A. (1989). Structural equations with latent variables. New Jersey: Wiley. Google Scholar
  7. Borkenau, P., & Ostendorf, F. (1998). The big five as states: How useful is the five-factor model to describe intraindividual variations over time? Journal of Research in Personality, 32, 202–221. CrossRefGoogle Scholar
  8. Brillinger, D.R., Preisler, H.K., Ager, A.A., & Kie, J.G. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference, 122, 43–63. CrossRefGoogle Scholar
  9. Brockwell, P.J., & Davis, R.A. (2002). Introduction to time series and forecasting. New York: Springer. Google Scholar
  10. Cox, D.R., & Miller, H.D. (1972). The theory of stochastic processes. London: Chapman & Hall. Google Scholar
  11. Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the experience sampling method. The Journal of Nervous and Mental Disease, 175, 526–536. PubMedCrossRefGoogle Scholar
  12. Daniels, M., & Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553–566. CrossRefGoogle Scholar
  13. De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer. Google Scholar
  14. De la Cruz-Mesía, R., Marshall, G. (2006). Non-linear random effects models with continuous time autoregressive errors: a Bayesian approach. Statistics in Medicine, 25, 1471–1784. PubMedCrossRefGoogle Scholar
  15. Delsing, M.J.M.H., Oud, J.H.L., & Bruyn, E.E.J. (2005). Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete vs. continuous time analysis. European Journal of Psychological Assessment, 21, 226–231. CrossRefGoogle Scholar
  16. Diggle, P.J., Heagerty, P., Liang, K.Y., & Zeger, S.L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press. Google Scholar
  17. Dunn, J.E., & Gipson, P.S. (1977). Analysis of radio telemetry data in studies of home range. Biometrics, 33, 85–101. CrossRefGoogle Scholar
  18. Ferrer, E., & Nesselroade, J.R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360. PubMedCrossRefGoogle Scholar
  19. Gelman, A., Goegebeur, Y., Tuerlinckx, F., & Van Mechelen, I. (2000). Diagnostic checks for discrete-data regression models using posterior predicitive simulations. Journal of the Royal Statistical Society Series C—Applied Statistics, 49, 247–268. CrossRefGoogle Scholar
  20. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis. New York: Chapman & Hall. Google Scholar
  21. Goldstein, H. (2003). Multilevel statistical models. London: Arnold. Google Scholar
  22. Hoekstra, H.A., Ormel, J., & De Fruyt, F. (1996). NEO PI-R, NEO FFI Big five persoonlijkheidsvragenlijsten: Handleiding [NEO PI-R, NEO FFI Big five personality questionnaire: Manual]. Lisse, The Netherlands: Swets & Zeitlinger B.V. Google Scholar
  23. Karlin, S., & Taylor, H. (1981). A second course in stochastic processes. New York: Academic Press. Google Scholar
  24. Kuppens, P., Van Mechelen, I., Nezlek, J.B., Dossche, D., & Timmermans, T. (2007). Individual differences in core affect variability and their relationship to personality and adjustment. Emotion, 7, 262–274. PubMedCrossRefGoogle Scholar
  25. Larsen, R.J. (2000). Toward a science of mood regulation. Psychological Inquiry, 11, 129–141. CrossRefGoogle Scholar
  26. Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling method. New Directions for Methodology of Social and Behavioral Science, 15, 41–56. Google Scholar
  27. Li, S.C., Huxhold, O., & Schmiedek, F. (2004). Aging and attenuated processing robustness: Evidence from cognitive and sensorimotor functioning. Gerontology, 50, 28–34. PubMedCrossRefGoogle Scholar
  28. Little, R.J., & Rubin, D.B. (2002). Statistical analysis with missing data. New York: Wiley. Google Scholar
  29. Lykken, D.T., & Tellegen, A. (1996). Happiness is a stochastic phenomenon. Psychological Science, 7, 186–189. CrossRefGoogle Scholar
  30. Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill. Google Scholar
  31. Oud, J.H.L. (2002). Continuous time modeling of the crossed-lagged panel design. Kwantitatieve Methoden, 69, 1–26. Google Scholar
  32. Oud, J.H.L. (2007). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 19–40). Mahwah: Lawrence Erlbaum Associates. Google Scholar
  33. Oud, J.H.L., & Singer, H. (2008). Continuous time modeling of panel data: Sem versus filter techniques. Statistica Neerlandica, 62, 4–28. Google Scholar
  34. Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods. Newbury Park: Sage. Google Scholar
  35. Robert, C.P., & Casella, G. (2004). Monte Carlo statistical methods. New York: Springer. Google Scholar
  36. Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172. PubMedCrossRefGoogle Scholar
  37. Russell, J.A., & Feldman-Barrett, L. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76, 805–819. PubMedCrossRefGoogle Scholar
  38. Russell, J.A., Weiss, A., & Mendelssohn, G.A. (1989). Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57, 493–502. CrossRefGoogle Scholar
  39. Schach, S. (1971). Weak convergence results for a class of multivariate Markov processes. The Annals of Mathematical Statistics, 42, 451–465. CrossRefGoogle Scholar
  40. Singer, H. (2008). Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62, 29–57. Google Scholar
  41. Smith, P.L. (2000). Stochastic, dynamic models of response times and accuracy: A foundational primer. Journal of Mathematical Psychology, 44, 408–463. PubMedCrossRefGoogle Scholar
  42. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 6, 583–640. CrossRefGoogle Scholar
  43. Sy, J.P., Taylor, J.M.G., & Cumberland, W.G. (1997). A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics, 53, 542–555. PubMedCrossRefGoogle Scholar
  44. Taylor, J.M.G., Cumberland, W.G., & Sy, J.P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association, 89, 727–736. CrossRefGoogle Scholar
  45. van Montfort, K., Oud, J., & Satorra, A. (2007). Longitudinal models in the behavioral and related sciences. Mahwah: Lawrence Erlbaum Associates. Google Scholar
  46. Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer. Google Scholar
  47. Walls, T.A., & Schafer, J.L. (2006). Models for intensive longitudinal data. New York: Oxford University Press. Google Scholar
  48. Zellner, A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley. Google Scholar

Copyright information

© The Psychometric Society 2009

Authors and Affiliations

  • Zita Oravecz
    • 1
  • Francis Tuerlinckx
    • 1
  • Joachim Vandekerckhove
    • 1
  1. 1.Department of PsychologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations