, 74:191 | Cite as

Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

  • Robert A. HensonEmail author
  • Jonathan L. Templin
  • John T. Willse
Theory and Methods


This paper uses log-linear models with latent variables (Hagenaars, in Loglinear Models with Latent Variables, 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for cognitive diagnosis, new alternatives to modeling the functional relationship between attribute mastery and the probability of a correct response are discussed.


cognitive diagnosis models log-linear latent class models latent class models 


  1. Agresti, A. (1990). Categorical data analysis. New York: Wiley. Google Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. CrossRefGoogle Scholar
  3. de la Torre, J., & Douglas, J.A. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353. CrossRefGoogle Scholar
  4. DiBello, L., Stout, W., & Roussos, L. (2007). Cognitive diagnosis Part I. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics : Vol. 26. Psychometrics. Amsterdam: Elsevier. Google Scholar
  5. Embretson, S. (1985). Studying intelligence with test theory models. In Current topics in human intelligence (Vol. 1, pp. 98–140). Google Scholar
  6. Fischer, G., & Forman, A. (1982). Some Applications of Logistic Latent Trait Models with Linear Constraints on the Parameters. Applied Psychological Measurement, 6(4), 397–416. Google Scholar
  7. Fu, J. (2005). A polytomous extension of the fusion model and its Bayesian parameter estimation. Unpublished doctoral dissertation. Google Scholar
  8. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (1995). Bayesian data analysis. London: Chapman & Hall. Google Scholar
  9. Gelman, A., Meng, X., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807. Google Scholar
  10. Haberman, S.J. (1974). Loglinear models for frequency tables derived by indirect observation: Maximum likelihood equations. Annals of Statistics, 2, 911–924. CrossRefGoogle Scholar
  11. Haberman, S.J. (1979). Qualitative data analysis: Vol. 2. New developments. New York: Academic Press. Google Scholar
  12. Haertel, E.H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 333–352. CrossRefGoogle Scholar
  13. Hagenaars, J. (1993). Loglinear models with latent variables. Thousand Oaks: Sage. Google Scholar
  14. Hartz, S. (2002) A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Unpublished doctoral dissertation. Google Scholar
  15. Jang, E. (2005) A validity narrative: Effects of reading skills diagnosis on teaching and learning in the context of NG TOEFL. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign. Google Scholar
  16. Janssen, R., & DeBoeck, P. (1997). Psychometric modeling of componentially designed synonym tasks. Applied Psychological Measurement, 21, 37–50. CrossRefGoogle Scholar
  17. Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272. CrossRefGoogle Scholar
  18. Lynch, S., & Western, B. (2004). Bayesian posterior predictive checks for complex models. Sociological Methods and Research, 32, 302–335. CrossRefGoogle Scholar
  19. Macready, G.B., & Dayton, C.M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Education Statistics, 33, 379–416. Google Scholar
  20. Muthén, L.K., & Muthén, B.O. (1998–2006). Mplus user’s guide (4th ed.). Los Angeles: Muthén & Muthén. Google Scholar
  21. Rindskopf, D. (1983). Ageneral framework for using latent class analysis to test hierarchical and non hierarchical learning models. Psychometrika, 48, 85–97. CrossRefGoogle Scholar
  22. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. CrossRefGoogle Scholar
  23. Tatsuoka, K.K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition. Hillsdale: Erlbaum. Google Scholar
  24. Templin, J. (2004). Generalized linear mixed proficiency models for cognitive diagnosis. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign. Google Scholar
  25. Templin, J., & Henson, R. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305. CrossRefPubMedGoogle Scholar
  26. Templin, J., Henson, R., & Douglas, J. (2006). General theory and estimation of cognitive diagnosis models: Using Mplus to derive model estimates. 2007 National Council on Measurement in Education training session, Chicago, Illinois. Google Scholar
  27. Templin, J., Henson, R., & Douglas, J. (2008). General theory and estimation of cognitive diagnosis models as constrained latent class models. Manuscript under review. Google Scholar
  28. Templin, J., Henson, R., Templin, S., & Roussos, L. (in press). Robustness of hierarchical modeling of attribute correlation in cognitive diagnosis models. Applied Psychological Measurement. Google Scholar
  29. Vermunt, J.K., & Magidson, J. (2005). Technical guide for latent GOLD choice 4.0: Basic and advanced. Belmont: Statistical Innovations. Google Scholar
  30. von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report RR-05-16). Google Scholar

Copyright information

© The Psychometric Society 2008

Authors and Affiliations

  • Robert A. Henson
    • 1
    Email author
  • Jonathan L. Templin
    • 2
  • John T. Willse
    • 1
  1. 1.The University of North Carolina at GreensboroGreensboroUSA
  2. 2.The University of North Carolina at GreensboroAthensUSA

Personalised recommendations