Locating the Extrema of Fungible Regression Weights

Abstract

In a multiple regression analysis with three or more predictors, every set of alternate weights belongs to an infinite class of “fungible weights” (Waller, Psychometrica, in press) that yields identical SSE (sum of squared errors) and R 2 values. When the R 2 using the alternate weights is a fixed value, fungible weights (a i ) that yield the maximum or minimum cosine with an OLS weight vector (b) are called “fungible extrema.” We describe two methods for locating fungible extrema and we report R code (R Development Core Team, 2007) for one of the methods. We then describe a new approach for populating a class of fungible weights that is derived from the geometry of alternate regression weights. Finally, we illustrate how fungible weights can be profitably used to gauge parameter sensitivity in linear models by locating the fungible extrema of a regression model of executive compensation (Horton & Guerard, Commun. Stat. Simul. Comput. 14:441–448, 1985).

This is a preview of subscription content, log in to check access.

References

  1. Dana, J., & Dawes, R. M. (2004). The superiority of simple alternatives to regression for social science predictions. Journal of Educational and Behavior Statistics, 29, 317–331.

    Article  Google Scholar 

  2. Ferguson, C. C. (1979). Intersections of ellipsoids and planes of arbitrary orientation and position. Mathematical Geology, 11, 329–33.

    Article  Google Scholar 

  3. Goldberger, A. S. (1968). Topics in regression analysis. New York: Macmillan.

    Google Scholar 

  4. Green, B. F. (1977). Parameter sensitivity in multivariate methods. Multivariate Behavioral Research, 12, 263–287.

    Article  Google Scholar 

  5. Guerard, J. B., & Horton, R. L. (1984). The management of executive compensation in large, dynamic firms: A ridge regression estimation. Communications in Statistics—Theory and Methods, 13, 183–190.

    Article  Google Scholar 

  6. Horton, R. L., & Guerard, J. B. (1985). The management of executive compensation in large, dynamic firms: A further look. Communications in Statistics—Simulation and Computations, 14, 441–448.

    Article  Google Scholar 

  7. Koopman, R. F. (1988). On the sensitivity of a composite to its weights. Psychometrika, 53, 547–552.

    Article  Google Scholar 

  8. Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4, 149–162.

    Article  Google Scholar 

  9. Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer, Berlin.

    Google Scholar 

  10. R Development Core Team (2007). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  11. Rencher, A. C. (2000). Linear models in statistics. New York: Wiley.

    Google Scholar 

  12. Rozeboom, W. W. (1979). Sensitivity of a linear composite of predictor items to differential item weighting. Psychometrika, 44, 289–296.

    Article  Google Scholar 

  13. Tatsuoka, M. M. (1971). Multivariate analysis in educational and psychological research. New York: Wiley.

    Google Scholar 

  14. ten Berge, J. M. F., & Nevels, K. (1977). A general solution to Mosier’s Procrustes problem. Psychometrika, 42, 593–600.

    Article  Google Scholar 

  15. Wainer, H. (1976). Estimating coefficients in linear models: It don’t make no nevermind. Psychological Bulletin, 83, 213–217.

    Article  Google Scholar 

  16. Wainer, H. (1978). On the sensitivity of regression and regressors. Psychological Bulletin, 85, 267–273.

    Article  Google Scholar 

  17. Waller, N. G. (in press). Fungible weights in multiple regression. Psychometrika. DOI: 10.1007/s11336-008-9066-z.

  18. Wilks, S. S. (1938). Weighting schemes for linear functions of correlated variables when there is no dependent variable. Psychometrika, 3, 23–40.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niels G. Waller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waller, N.G., Jones, J.A. Locating the Extrema of Fungible Regression Weights. Psychometrika 74, 589 (2009). https://doi.org/10.1007/s11336-008-9087-7

Download citation

Keywords

  • multiple regression
  • alternate weights
  • fungible weights
  • parameter sensitivity