, 72:393 | Cite as

Copula Functions for Residual Dependency

  • Johan BraekenEmail author
  • Francis Tuerlinckx
  • Paul De Boeck
Theory and Methods


Most item response theory models are not robust to violations of conditional independence. However, several modeling approaches (e.g., conditioning on other responses, additional random effects) exist that try to incorporate local item dependencies, but they have some drawbacks such as the nonreproducibility of marginal probabilities and resulting interpretation problems. In this paper, a new class of models making use of copulas to deal with local item dependencies is introduced. These models belong to the bigger class of marginal models in which margins and association structure are modeled separately. It is shown how this approach overcomes some of the problems associated with other local item dependency models.


item response theory local item dependency copula 


  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csáki (Eds.), 2nd international symposium on information theory (pp. 267–281). Armenia, USSR: Tsahkadsov. Google Scholar
  2. Ashford, J.R., & Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535–546. CrossRefPubMedGoogle Scholar
  3. Bahadur, R. (1961). A representation of the joint distribution of responses to n dichotomous items. In H. Solomon (Ed.), Studies in item analysis and prediction (pp. 158–168). Palo Alto, CA: Standford University Press. Google Scholar
  4. Bell, R.C., Pattison, P.E., & Withers, G.P. (1988). Conditional independence in a clustered item test. Applied Psychological Measurement, 12, 15–16. CrossRefGoogle Scholar
  5. Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168. CrossRefGoogle Scholar
  6. Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289. Google Scholar
  7. Clayton, D.G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151. CrossRefGoogle Scholar
  8. Cook, R.D., & Johnson, M.E. (1981). A family of distributions to modeling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society, Series B, 43, 210–218. Google Scholar
  9. Cox, D.R. (1972). The analysis of multivariate binary data. Applied Statistics, 21, 113–120. CrossRefGoogle Scholar
  10. De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer. Google Scholar
  11. Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large-scale hands-on science performance assessment. Journal of Educational Measurement, 36, 119–140. CrossRefGoogle Scholar
  12. Fitzmaurice, G.M., Laird, N.M., & Rotnitzky, A.G. (1993). Regression models for discrete longitudinal responses. Statistical Science, 8, 284–309. CrossRefGoogle Scholar
  13. Frank, M.J. (1979). On the simultaneous associativity of F(x,y) and x+y-F(x,y). Aequationes Mathematica, 19, 194–226. CrossRefGoogle Scholar
  14. Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université Lyon, Série 3, 14, 53–57. Google Scholar
  15. Frees, A.W., & Valdez, E.A. (1998). Understanding relationships using copulas. Actuarial Research Clearing House, 1, 5–15. Google Scholar
  16. Genest, C., & MacKay, J. (1986). Copules archimédiennes et familles de lois bi-dimensionelles dont les marges sont donées. Canadian Journal of Statistics, 14, 145–159. CrossRefGoogle Scholar
  17. Hoeffding, W. (1940). Masstabinvariante Korrelations-Theorie. Schriften des Matematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin (5:3, pp. 179–223). [Reprinted as Scale-invariant correlation theory in the Collected Works of Wassily Hoeffding, N.I. Fischer, & P.K. Sen (Eds.), New York: Springer]. Google Scholar
  18. Holland, P.W. (1990). The Dutch identity: A new tool for the study of item response models. Psychometrika, 55, 5–18. CrossRefGoogle Scholar
  19. Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. Annals of Statistics, 14, 1523–1543. CrossRefGoogle Scholar
  20. Hoskens, M., & De Boeck, P. (1997). A parametric model for local item dependencies among test items. Psychological Methods, 2, 261–277. CrossRefGoogle Scholar
  21. Ip, E. (2000). Adjusting for information inflation due to local dependence in moderately large item clusters. Psychometrika, 65, 73–81. CrossRefGoogle Scholar
  22. Ip, E. (2001). Testing for local dependence in dichotomous and polutomous item response models. Psychometrika, 66, 109–132. CrossRefGoogle Scholar
  23. Ip, E. (2002). Locally dependent latent trait model and the Dutch identity revisited. Psychometrika, 67, 367–386. CrossRefGoogle Scholar
  24. Ip, E., Wang, Y.J., De Boeck, P., & Meulders, M. (2004). Locally dependent latent trait models for polytomous responses. Psychometrika, 69, 191–216. CrossRefGoogle Scholar
  25. Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46, 262–282. CrossRefGoogle Scholar
  26. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall. Google Scholar
  27. Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255–278. CrossRefGoogle Scholar
  28. Kotz, S., Balakrishnan, N., & Johnson, N. (2000). Continuous multivariate distributions (Vol. 1). New York: Wiley. CrossRefGoogle Scholar
  29. Liang, K.-Y., Zeger, S.L., & Qaqish, B. (1992). Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B, 54, 3–10. Google Scholar
  30. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of National Cancer Institute, 22, 719–748. Google Scholar
  31. Masters, G.N. (1988). Item discrimination: When more is worse. Journal of Educational Measurement, 25, 15–19. CrossRefGoogle Scholar
  32. McCullagh, P. (1989). Models for discrete multivariate responses. Bulletin of the International Statistics Institute, 53, 407–418. Google Scholar
  33. Meester, S.G. (1991). Methods for clustered categorical data. Unpublished doctoral dissertation. University of Waterloo, Canada. Google Scholar
  34. Molenberghs, G., & Verbeke, G. (2005). Models for discrete longitudinal data. New York: Springer. Google Scholar
  35. Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill. Google Scholar
  36. Nelsen, R.B. (1999). An introduction to copulas. New York: Springer. Google Scholar
  37. Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish Institute for Educational Research. Google Scholar
  38. Rosenbaum, P.R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435. CrossRefGoogle Scholar
  39. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 7. Google Scholar
  40. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. CrossRefGoogle Scholar
  41. Scott, S.L., & Ip, E. (2002). Empirical Bayes and item clustering effects in a latent variable hierarchical model: A case study from the national assessment of educational progress. Journal of the American Statistical Association, 97, 409–419. CrossRefGoogle Scholar
  42. Self, G.H., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610. CrossRefGoogle Scholar
  43. Sireci, S.G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. Journal of Educational Measurement, 28, 237–247. CrossRefGoogle Scholar
  44. Sklar, A. (1959). Fonctions de répartition à n dimension et leurs marges. Publications Statistiques Université de Paris, 8, 229–231. Google Scholar
  45. Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27, 159–203. CrossRefGoogle Scholar
  46. Tuerlinckx, F., & De Boeck, P. (2001a). The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. Psychological Methods, 6, 181–195. CrossRefPubMedGoogle Scholar
  47. Tuerlinckx, F., & De Boeck, P. (2001b). Non-modeled item interactions lead to distorted discrimination parameters: A case study. Methods of Psychological Research, 6. [Retrieved May 20, 2005 from].
  48. Tuerlinckx, F., & De Boeck, P. (2004). Models for residual dependencies. In P. De Boeck & M. Wilson (Eds.), Explanatory item response models: A generalized linear and nonlinear approach (pp. 289–316). New York: Springer. Google Scholar
  49. Vansteelandt, K. (2000). Formal models for contextualized personality psychology. Unpublished doctoral dissertation. K.U. Leuven, Belgium. Google Scholar
  50. Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415. CrossRefGoogle Scholar
  51. Yen, W.M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125–145. CrossRefGoogle Scholar
  52. Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187–213. CrossRefGoogle Scholar
  53. Zhao, L.P., & Prentice, R.L. (1990). Correlated binary regression using a generalized quadratic model. Biometrics, 77, 642–648. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2007

Authors and Affiliations

  • Johan Braeken
    • 1
    Email author
  • Francis Tuerlinckx
    • 1
  • Paul De Boeck
    • 1
  1. 1.Research Group Quantitative and Personality Psychology, Department of PsychologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations