, Volume 70, Issue 1, pp 147–167 | Cite as

On muthén’s maximum likelihood for two-level covariance structure models



Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthén’s maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When data are balanced, MUML is equivalent to the maximum likelihood procedure. Simulation results in the literature endorse the MUML procedure also for unbalanced data. This paper studies the analytical properties of the MUML procedure in general. The results indicate that the MUML procedure leads to correct model inference asymptotically when level-2 sample size goes to infinity and the coefficient of variation of the level-1 sample sizes goes to zero. The study clearly identifies the impact of level-1 and level-2 sample sizes on the standard errors and test statistic of the MUML procedure. Analytical results explain previous simulation results and will guide the design or data collection for the future applications of MUML.


asymptotics likelihood ratio statistic multilevel covariance structure standard error estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J.C., Gerbing D.W. (1984) The effects of sampling error on convergence, improper solutions and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49:155–173Google Scholar
  2. Bentler P.M., Liang J. (2003) Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In S. Reise N. Duan (Eds.) Multilevel Modeling: Methodological Advances Issues and Applications (pp. 53–70) Mahwah, NJ: ErlbaumGoogle Scholar
  3. Boomsma A. (1982) The robustness of LISREL against small sample sizes in factor analysis models. In K.G. Jöreskog H. Wold (Eds.) Systems Under Indirect bservation: Causality Structure Prediction (Part I pp.149–173) Amsterdam: North-HollandGoogle Scholar
  4. Browne M.W. (1984) Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37:62–83PubMedGoogle Scholar
  5. Curran, P.J. (1994). The Robustness of Confirmatory Factor Analysis to Model Misspecification and Violations of Normality. Ph.D. thesis, Arizona State University.Google Scholar
  6. Curran P.J., Bollen K.A., Paxton P., Kirby J., Chen F. (2002) The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from Monte Carlo simulation. Multivariate Behavioral Research 37:1–36CrossRefGoogle Scholar
  7. Duncan T.E., Duncan S.C., Strycker L.A., Li F., Alpert A. (1999) An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. Mahwah, NJ: ErlbaumGoogle Scholar
  8. du Toit S. & M. du Toit (in press) Multilevel structural equation modeling. In J. de Leeuw & I. Kreft (Eds.), Handbook of Quantitative Multilevel Analysis. New York: Kluwer.Google Scholar
  9. Goldstein H. (1986) Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73:43–56Google Scholar
  10. Goldstein H. (1995) Multilevel Statistical Models (2nd edn) London: Edward ArnoldGoogle Scholar
  11. Goldstein H., McDonald R.P. (1988) A general model for the analysis of multilevel data. Psychometrika, 53:435–467Google Scholar
  12. Heck R.H., Thomas S.L. (2000) An Introduction of Multilevel Modeling Techniques. Mahwah, NJ: ErlbaumGoogle Scholar
  13. Hox J.J. (1993) Factor analysis of multilevel data: Gauging the Muthén model. In J.H.L. Oud R.A.W. van Blokland-Vogelesang (Eds.) Advances in Longitudinal and Multivariate Analysis in the Behavioral Sciences (pp.141–156) Nijmegen: ITSGoogle Scholar
  14. Hox J.J. (2002) Multilevel Analysis: Techniques and Applications. Mahwah, NJ: ErlbaumGoogle Scholar
  15. Hox J.J., Maas C.J.M. (2001) The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8:157–174CrossRefGoogle Scholar
  16. Hox J.J., Maas C.J.M. (2002) Sample sizes for multilevel modeling. In: J. Blasius J. Hox E. de Leeuw P. Schmidt (Eds.) Social science methodology in the new illennium. Proceedings of the Fifth International Conference on Logic and Methodology (2nd xpanded edn) Opladen, RG: Leske + Budrich Verlag (CD-ROM)Google Scholar
  17. Kano Y., Miura A. (2002) Graphical multivariate analysis with AMOS, EQS, and CALIS: A visual approach to covariance structure analysis (revised edn) Kyoto, Japan: Gendai-SugakushaGoogle Scholar
  18. Kreft I., de Leeuw J. (1998) Introducing multilevel modeling. London: SageGoogle Scholar
  19. Lee S.-Y. (1990) Multilevel analysis of structural equation models. Biometrika, 77:763–772Google Scholar
  20. Lee S.-Y., Poon W.-Y. (1998) Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8:749–766MathSciNetGoogle Scholar
  21. Liang J., Bentler P. M. (2004) An EM algorithm for fitting two-level structural equation models. Psychometrika, 69:101–122Google Scholar
  22. Liang K.Y., Zeger S.L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73:13–22Google Scholar
  23. Little T.D., Schnabel K.U., Baumert J. (Eds.) (2000) Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches and Specific Examples. Mahwah, NJ: ErlbaumGoogle Scholar
  24. Longford N.T. (1987) A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827Google Scholar
  25. Longford N.T. (1993) Regression analysis of multilevel data with measurement error British Journal of Mathematical and Statistical Psychology, 46:301–311Google Scholar
  26. Magnus J.R., Neudecker H. (1999) Matrix Differential Calculus with Applications in Statistics and Econometrics (revised edn) New York: WileyGoogle Scholar
  27. McArdle J.J., Hamagami F. (1996) Multilevel models from a multiple group structural equation perspective. In G.A. Marcoulides R.E. Schumacker (Eds.) Advanced Structural Equation Modeling Techniques (pp.89–124) Mahwah NJ: ErlbaumGoogle Scholar
  28. McDonald R.P. (1994) The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22:399–413Google Scholar
  29. McDonald R.P., Goldstein H. (1989) Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42:215–232Google Scholar
  30. Muirhead R.J. (1982) Aspects of Multivariate Statistical Theory. New York: WileyGoogle Scholar
  31. Muthén B. (1989) Latent variable modeling in heterogeneous populations. Psychometrika, 54:557–585MathSciNetGoogle Scholar
  32. Muthén B. (1990) Mean and covariance structure analysis of hierarchical data. Paper presented at the Psychometric Society meeting in Princeton, NJ, June 1990. UCLA Statistics Series 62Google Scholar
  33. Muthén B. (1994) Multilevel covariance structure analysis. Sociological Methods and Research, 22:376–398Google Scholar
  34. Muthén B. (1997) Latent variable modeling of longitudinal and multilevel data. In A. Raftery (Ed.) Sociological Methodology 1997 (pp.453–480) Boston: Blackwell PublishersGoogle Scholar
  35. Muthén B., Satorra A. (1995) Complex sample data in structural equation modeling. In P.V. Marsden (Ed.) Sociological Methodology 1995 (pp.267–316) Cambridge, MA: Blackwell PublishersGoogle Scholar
  36. Poon W.-Y., Lee S.-Y. (1994) A distribution free approach for analysis of two-level structural equation model. Computational Statistics and Data Analysis, 17, 265–275CrossRefGoogle Scholar
  37. Raudenbush S.W., Bryk A.S. (2002) Hierarchical linear models (2nd edn) Newbury Park: Sage.Google Scholar
  38. Reise S., Duan N. (Eds) (2003) Multilevel Modeling: Methodological Advances, Issues, and Applications. Mahwah, NJ: ErlbaumGoogle Scholar
  39. Satorra A., Bentler P.M. (1994) Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye C.C. Clogg (Eds.) Latent Variables Analysis: Applications for Developmental Research (pp.399–419) Thousand Oaks CA: SageGoogle Scholar
  40. Snijders T., Bosker R. (1999) Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Thousand Oaks CA: SageGoogle Scholar
  41. Yuan K.-H., Bentler P. M. (2002) On normal theory based inference for multilevel models with distributional violations. Psychometrika 67:539–561Google Scholar
  42. Yuan K.-H., Bentler P.M. (1997) Improving parameter tests in covariance structure analysis. Computational Statistics and Data Analysis 26:177–198CrossRefGoogle Scholar
  43. Yuan K.-H., Bentler P.M. (2003a) Eight test statistics for multilevel structural equation models. Computational Statistics and Data Analysis 44:89–107CrossRefMathSciNetGoogle Scholar
  44. Yuan K.-H., Bentler P.M. (2003b) Stepwise analysis of multilevel covariance structure models (under review)Google Scholar
  45. Yuan K.-H., Jennrich R.I. (1998) Asymptotics of estimating equations under natural conditions. Journal of Multivariate Analysis 65:245–260CrossRefGoogle Scholar
  46. Yuan K.-H., Marshall L.L., Bentler P.M. (2002) A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika 67:95–122MathSciNetGoogle Scholar
  47. Yuan K.-H., Marshall L.L., Bentler P.M. (2003) Assessing the effect of model misspecifications on parameter estimates in structural equation models. In R.M. Stolzenberg (Ed.) Sociological Methodology 2003 (pp.241–265) Oxford: Blackwell PublishingGoogle Scholar

Copyright information

© The Psychometric Society 2005

Authors and Affiliations

  1. 1.University of Notre DameUSA
  2. 2.University Of Hawaii at ManoaUSA
  3. 3.University of Notre DameUSA

Personalised recommendations