, Volume 70, Issue 1, pp 179–202 | Cite as

Evolutionary preference/utility functions: A dynamic perspective

  • Wayne S. DeSarbo
  • Duncan K. H. Fong
  • John Liechty
  • Jennifer Chang Coupland


The collection of repeated measures in psychological research is one of the most common data collection formats employed in survey and experimental research. The behavioral decision theory literature documents the existence of the dynamic evolution of preferences that occur over time and experience due to learning, exposure to additional information, fatigue, cognitive storage limitations, etc. We introduce a Bayesian dynamic linear methodology employing an empirical Bayes estimation framework that permits the detection and modeling of such potential changes to the underlying preference utility structure of the respondent. An illustration of revealed stated preference analysis (i.e., conjoint analysis) is given involving students’ preferences for apartments and their underlying attributes and features. We also present the results of several simulations demonstrating the ability of the proposed procedure to recover a variety of different sources of dynamics that may surface with preference elicitation over repeated sequential measurement. Finally, directions for future research are discussed.


preference analysis dynamic models bayesian analysis sequential measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addelman S. (1962) Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics 4:21–46Google Scholar
  2. Aguilar O., West M. (2000) Bayesian dynamic factor models and portfolio allocation. Journal of Business and Economic Statistics 18:338–357Google Scholar
  3. Anderson N. H. (1971) Integration theory and attitude change. Psychological Review 78:171–206Google Scholar
  4. Anderson N. H. (1981) Foundations of information integration theory. San Diego, CA: Academic PressGoogle Scholar
  5. Bechtel G. G. (1976) Multidimensional preference scaling. The Hague, Netherlands: MoutonGoogle Scholar
  6. Berlyne D. E. (1960) Conflict, Arousal and Curiosity New York: Mc-Graw HillGoogle Scholar
  7. Berlyne D. E. (1974) Studies in the new experimental aesthetics. Washington, D.C.:HemisphereGoogle Scholar
  8. Bernardo J. M. (1979) Reference posterior distributions for Bayesian inference (with discussion) Journal of the Royal Statistical Society Ser. B 41:113–148Google Scholar
  9. Bhattacharjee B., Sinha K. C., Krogmeier J. V. (2001) Modeling the effects of traveler information on freeway origin-destination demand prediction. Transportation Research Part C-Emerging Technologies 9:381–398Google Scholar
  10. Brickman P., D’Amato B. (1975) Exposure effects in a free-choice situation. Journal of Personality and Social Psychology 32 (Sept):415–420Google Scholar
  11. Cacioppo J. T., Petty R. E. (1979) Effects of message repetition and position of cognition response, recall, and persuasion. Journal of Personality and Social Psychology 37 (January):97–109CrossRefGoogle Scholar
  12. Cargnoni C., Muller P., West M. (1997) Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models. Journal of the American Statistical Association 92:640–647Google Scholar
  13. Carroll J.D. (1969) Categorical conjoint measurement. Meeting of Mathematical Psychology. Ann Arbor, MIGoogle Scholar
  14. Cook T. D., Campbell D. T. (1979) Quasi-experimentation: Design and analysis issues for field settings Boston: Houghton-MifflinGoogle Scholar
  15. Fischhoff B., Slovic P., Lichtenstein S. (1980) Knowing what you want: Measuring labile values. In T. Wallstein (Ed.), Cognitive processes in choice and decision behavior (pp 117–141) Hillsdale, NJ: ErlbaumGoogle Scholar
  16. Fruhwirth-Schnatter S. (2001) Markov chain monte-carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association 96:194–209CrossRefMathSciNetGoogle Scholar
  17. Gelman A., Carlin J. B., Stern H. S., Rubin D. B. (1997) Bayesian data analysis. London: Chapman and HallGoogle Scholar
  18. Gilbert D. T. (1989) Thinking lightly about others: Automatic components of the social inference process. In J. S. Uleman, J. A. Bargh, (Eds.), Unintended Thought (pp. 189–211) New York: GuilfordGoogle Scholar
  19. Gilbert D. T., Krull D.S., Pelham B.W. (1988) Of thoughts unspoken: Social inference and the self-regulation of behavior. Journal of Personality and Social Psychology 55:685–694CrossRefGoogle Scholar
  20. Green P.E. (1974) On the design of choice experiments involving multifactor alternatives. Journal of Consumer Research 1:61–68CrossRefGoogle Scholar
  21. Green P.E., Rao V.R. (1971) Conjoint measurement for quantifying judgmental data. Journal of Marketing Research 8:355–363CrossRefGoogle Scholar
  22. Green P.E., Rao V.R. (1971) Conjoint measurement for quantifying judgmental data. Journal of Marketing Research 8:355–363Google Scholar
  23. Hair J. E., Anderson R. E., Tatham R. L., Black W.C. (1995) Multivariate data analysis (4th ed.) Englewood Cliffs, NJ: Prentice HallGoogle Scholar
  24. Herr P. M. (1989) Priming price: Prior knowledge and context effects. Journal of Consumer Research 16:67–75CrossRefGoogle Scholar
  25. Huber J., Wittink D.R., Johnson R. M., Miller R. (1992) Learning effects in preference tasks: Choice-based versus standard conjoint. In Sawtooth Software Conference Proceedings, Sequim, WA: Sawtooth Software, Inc.Google Scholar
  26. Huber J., Hansen D. (1986) Testing the impact of dimensional complexity and affective differences of paired concepts in adaptive conjoint analysis. In M. Wallendorf P. Anderson (Eds.), Advances in Consumer Research (Vol. 14, pp. 159–163) Provo, UT: Association for Consumer ResearchGoogle Scholar
  27. Huynh H. (1980) A nonrandomized Minimax solution for passing scores in the binomial error model. Psychometrika 45:167–182Google Scholar
  28. Jeffreys H. (1961) Theory of Probability, (3rd ed) Oxford University Press: LondonGoogle Scholar
  29. Johar G. V., Jedidi K., Jacoby J. (1997) A varying-parameter averaging model of on-line brand evaluations. Journal of Consumer Research 24:232–246CrossRefGoogle Scholar
  30. Johnson E. J., Meyer R. J. (1984) Compensatory choice models of noncompensatory processes: The effect of varying context. Journal of Consumer Research 11:528–541CrossRefGoogle Scholar
  31. Johnson R. M., Orme B. K. (1996) How many questions should you ask in choice-based conjoint studies? Technical Report Sequim, WA: Sawtooth Software, IncGoogle Scholar
  32. Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decision making under risk. Econometrica 47:263–291Google Scholar
  33. Kardes F. R., Kalyanaram G. (1992) Order-of-entry effects on consumer memory and judgment: An information integration perspective. Journal of Marketing Research 29:343–357Google Scholar
  34. Kass R., Raftery A.E., (1995) Bayes factors. Journal of the American Statistical Association 90:40–60Google Scholar
  35. Kruskal J.B. (1965) Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society, Series B27:251–263Google Scholar
  36. Lopes L. L. (1982) Toward a procedural theory of judgment. Unpublished doctoral dissertation, University of WisconsinGoogle Scholar
  37. Louviere J.J., Hensher D.A., Swait J.D. (2000) Stated choice models: Analysis and application. Cambridge, England: Cambridge University PressGoogle Scholar
  38. Luce R. D., Tukey J. W. (1964) Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology 1:1–27CrossRefGoogle Scholar
  39. March J. G. (1978) Bounded rationality, ambiguity, and the engineering of choice. Bell Journal of Economics 9:587–608Google Scholar
  40. Meyer R. J. (1987) The learning of multiattribute judgment policies. Journal of Consumer Research 14:155–173CrossRefGoogle Scholar
  41. Moore D. A. (1999) Order effects in preference judgments: evidence for context dependence in the generation of preferences. Organizational Behavior and Human Decision Processes 78:146–165CrossRefPubMedGoogle Scholar
  42. Pole A., West M., Harrison J. (1994) Applied bayesian forecasting and time series analysis. New York: Chapman and HallGoogle Scholar
  43. Prado R., West M., Krystal A. D. (1999) Multi-channel EEG analyses via dynamic regression models with time-varying lag lead structure. Applied Statistics 50:95–110Google Scholar
  44. Simonson I., Tversky A. (1992) Choice in context: tradeoff contrast and extremeness aversion. Journal of Marketing Research 29:281–295Google Scholar
  45. P. Slovic, D. Griffin, A. Tversky (1990) Compatibility affects in judgment and choice. In R. M. Hogarth (Ed.), Insights in decision making: A tribute to Hillel J. Einhorn. Chicago: University of Chicago PressGoogle Scholar
  46. Tonellato S. F. (2001) A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations. Journal of the Royal Statistical Society Series C-Applied Statistics 50:187–200CrossRefGoogle Scholar
  47. Torgerson W. S. (1958) Theory and methods of scaling. New York: WileyGoogle Scholar
  48. West M., Harrison J. (1997) Bayesian forecasting and dynamic models. New York: SpringerGoogle Scholar
  49. Young F.W. (1969) Polynomial conjoint analysis of similarities: Definitions for a special algorithm. Research Paper No. 76. University of North Carolina: Psychometric LaboratoryGoogle Scholar
  50. Zajonc R. B. (1968) Attitudinal effects of mere exposure. Journal of Personality and Social Psychology Monograph Supplement 9 (Part 2):1–28Google Scholar
  51. Zajonc R. B., Markus H., Wilson W. R. (1974) Exposure affects and associative learning. Journal of Experimental Psychology 10:248–263CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2005

Authors and Affiliations

  • Wayne S. DeSarbo
    • 1
    • 5
  • Duncan K. H. Fong
    • 2
  • John Liechty
    • 3
  • Jennifer Chang Coupland
    • 4
  1. 1.Pennsylvania State UniversityUSA
  2. 2.Pennsylvania State UniversityUSA
  3. 3.Pennsylvania State UniversityUSA
  4. 4.Pennsylvania State UniversityUSA
  5. 5.Marketing Department, Smeal College of BusinessPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations