, Volume 70, Issue 1, pp 71–98 | Cite as

Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation

  • Frank M. T. A. BusingEmail author
  • Patrick J. K. Groenen
  • Willem J. Heiser


Multidimensional unfolding methods suffer from the degeneracy problem in almost all circumstances. Most degeneracies are easily recognized: the solutions are perfect but trivial, characterized by approximately equal distances between points from different sets. A definition of an absolutely degenerate solution is proposed, which makes clear that these solutions only occur when an intercept is present in the transformation function. Many solutions for the degeneracy problem have been proposed and tested, but with little success so far. In this paper, we offer a substantial modification of an approach initiated bythat introduced a normalization factor based on thevariance in the usual least squares loss function. Heiser unpublishedthesis, (1981) and showed that the normalization factor proposed by Kruskal and Carroll was not strong enough to avoid degeneracies. The factor proposed in the present paper, based on the coefficient of variation, discourages or penalizes nonmetric transformations of the proximities with small variation, so that the procedure steers away from solutions with small variation in the interpoint distances. An algorithm is described for minimizing the re-adjusted loss function, based on iterative majorization. The results of a simulation study are discussed, in which the optimal range of the penalty parameters is determined. Two empirical data sets are analyzed by our method, clearly showing the benefits of the proposed loss function.


unfolding degeneracy penalty Stress iterative majorization PREFSCAL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett J.F., Hayes W.L. (1960) Multidimensional unfolding: Determining the dimensionality of ranked preference data. Psychometrika, 25:36–48Google Scholar
  2. Borg I., Bergermaier R. (1982) Degenerationsprobleme im Unfolding und Ihre ösung. Zeitschrift ür Sozialpsychologie, 13:287–299Google Scholar
  3. Borg I., Groenen P.J.F. (1997) Modern Multidimensional Scaling: Theory and Applications. New York: SpringerGoogle Scholar
  4. Borg I., Lingoes J. (1987) Multidimensional Similarity Structure Analysis. Berlin: SpringerGoogle Scholar
  5. Busing F.M.T.A., Heiser W.J. (2003) PREFSCAL Progress Report: two-way models (Tech. Rep.) Leiden, The Netherlands: Leiden University. (working paper)Google Scholar
  6. Carroll, J.D. (1972). In R.N. Shepard, A.K. Romney S.B. Nerlove (Eds), Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Vol. 1, pp 105–155) New York: Seminar PressGoogle Scholar
  7. Coombs C.H. (1950) Psychological scaling without a unit of measurement. Psychological Review, 57:148–158Google Scholar
  8. Coombs C.H. (1964) A Theory of Data. New York: WileyGoogle Scholar
  9. Coombs C.H., Kao R.C. (1960) On a connection between factor analysis and multidimensional unfolding. Psychometrika, 25:219–231Google Scholar
  10. Dagpunar A. (1988) Principles of Random Variate Generation. Oxford: Clarendon PressGoogle Scholar
  11. De Leeuw J. (1977) Applications of convex analysis to multidimensional scaling. In J.R. Barra, F. Brodeau, G. Romier B.van Cutsem (Eds), Recent Developments in Statistics (pp. 133–145)Amsterdam, The Netherlands: North-HollandGoogle Scholar
  12. De Leeuw, J. (1983). On Degenerate Nonmetric Unfolding Solutions (Tech. Rep.). Department of Data Theory, FSW/RUL.Google Scholar
  13. De Leeuw J., Heiser W.J. (1980) Multidimensional scaling with restrictions on the configuration. In P.R. Krishnaiah (Ed.), Multivariate Analysis (VOL 5, pp 501–522)Amsterdam, The Netherlands: North-HollandGoogle Scholar
  14. Dennis J.E., Schnabel R.B. (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, New Jersey: Prentice-Hall. (Republished by SIAM, Philadelphia, in 1996 as Vol. 16 of Classics in Applied Mathematics)Google Scholar
  15. DeSarbo W.S., Carroll J.D. (1985) Three-way metric unfolding via alternating weighted least squares. Psychometrika, 50(3):275–300Google Scholar
  16. DeSarbo W.S., Rao V.R. (1984) GENFOLD2: A set of models and algorithms for the GENeral unFOLDing analysis of preference/dominance data. Journal of Classification, 1:147–186Google Scholar
  17. DeSarbo W.S., Young M.R., Rangaswamy A. (1997). A parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research (Tech. Rep.). The Pennsylvania State University.(Working paper)Google Scholar
  18. Dinkelbach W. (1967) On nonlinear fractional programming. Management Science, 13:492–498Google Scholar
  19. Gower J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53:325–338Google Scholar
  20. Green P.E., Rao V. (1972) Applied multidimensional scaling. Hinsdale, IL: Dryden PressGoogle Scholar
  21. Groenen P.J.F. (1993). The majorization Approach to Multidimensional Scaling: Some Problems and Extensions.Leiden, The Netherlands: DSWO PressGoogle Scholar
  22. Groenen P.J.F., Heiser W.J. (1996) The tunneling method for global optimization in multidimensional scaling. Psychometrika, 61:529–550Google Scholar
  23. Hardy G.H., Littlewood J.E., Polya G. (1952) Inequalities. Cambridge: Cambridge University PressGoogle Scholar
  24. Hayes W.L., Bennett J.F. (1961) Multidimensional unfolding: Determining configuration from complete rank order preference data. Psychometrika, 26:221–238Google Scholar
  25. Heiser, W.J. (1981). Unfolding analysis of proximity data. Unpublished doctoral dissertation, Leiden University.Google Scholar
  26. Heiser W.J. (1987) Joint ordination of species and sites: The unfolding technique. In P.Legendre L.Legendre (Eds.), Developments in Numerical Ecology (pp. 189–221)Berlin, Heidelberg: SpringerGoogle Scholar
  27. Heiser W.J. (1989) Order invariant unfolding analysis under smoothness restrictions. In G. De Soete, H. Feger, K.C. Klauer (Eds.) New Developments in Psychological Choice Modeling (pp. 3–31)Amsterdam: North-HollandGoogle Scholar
  28. Heiser W.J. (1995) Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis. In W.J. Krzanowski(Ed), Recent Advances in Descriptive Multivariate Analysis (pp. 157–189)Oxford: Oxford University PressGoogle Scholar
  29. Heiser, W.J., & De Leeuw J. (1979). How to Use SMACOF-III: A Program for Metric Multidimensional Unfolding (Tech. Rep.). Leiden University, Department of Data Theory.Google Scholar
  30. Katsnelson J., Kotz S. (1957) On the upper limits of some measures of variability. Archivfür Meterologie, Geophysik and Bioklimatologie (B), 8:103Google Scholar
  31. Kim C., Rangaswamy A., DeSarbo W.S. (1999) A quasi-metric approach to multidimensional unfolding for reducing the occurence of degenerate solutions. Multivariate Behavioral Research, 34(2):143–180CrossRefGoogle Scholar
  32. Kruskal J.B. (1964a) Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika, 29:1–27Google Scholar
  33. Kruskal J.B. (1964b) Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29:115–129Google Scholar
  34. Kruskal J.B. (1977) Multidimensional scaling and other methods for discovering structure. In K. Enslein, A. Ralston H.S. Wilf (Eds.), Mathematical Methods for Digital Computers (VOL. 2, pp 296-339)New York: WileyGoogle Scholar
  35. Kruskal J.B., Carroll J.D. (1969) Geometrical models and badness-of-fit functions.In P.R. Krishnaiah (Ed.), Multivariate Analysis(vol. 2, pp 639–671)New York: Academic PressGoogle Scholar
  36. Kruskal J.B., Young F.W., Seery J.B. (1978) How to Use KYST, A Very Flexible Program to do Multidimensional Scaling and Unfolding(Tech. Rep.)Murray Hill, NJ: Bell LaboratoriesGoogle Scholar
  37. L’Ecuyer P. (1999) Tables of maximally equidistributed combined LFSR generators. Mathematics of Computing, 68:261–269CrossRefGoogle Scholar
  38. Marden J. I. (1995) Analyzing and Modeling Rank Data. London: Chapman and HallGoogle Scholar
  39. McClelland G.H., Coombs C.H. (1975) ORDMET: A general algorithm for constructing all numerical solutions to ordered metric solutions. Psychometrika, 40:269–290Google Scholar
  40. Pearson K. (1896) Regression, heridity, and panmixia. Philosophical Transactions of the Royal Society of London, Series A, 187:253–318Google Scholar
  41. Roskam E.E. Ch.I. (1968) Metric Analysis of Ordinal Data. Voorschoten: VAM. Shepard, R.N. (1974) Representation of structure in similarity data: Problems and prospects. Psychometrika, 39(4):373–421Google Scholar
  42. Takane Y., Young F.W., Leeuw J. (1977) Nonmetric individual differences MDS: An alternating least squares method with optimal scaling features. Psychometrika, 42:7–67Google Scholar
  43. Takane Y., Young F.W., Leeuw J. (1977) Nonmetric individual differences MDS: An alternating least squares method with optimal scaling features. Psychometrika, 42:7–67Google Scholar
  44. Torgerson W.S. (1958) Theory and Methods of Scaling. New York: WileyGoogle Scholar
  45. Trosset M.W. (1998) A new formulation of the nonmetric STRAIN problem in multidimensional scaling. Journal of Classification, 15:15–35CrossRefGoogle Scholar
  46. Van Blokland-Vogelesang A.W. (1989) Unfolding and consensus ranking: A prestige ladder for technical occupations. In G. De Soete, H. Feger K. C. Klauer (Eds.), New Developments in Psychological Choice Modeling (pp. 237–258)Amsterdam, The Netherlands: North-HollandGoogle Scholar
  47. Van Blokland-Vogelesang A.W. (1993) A nonparametric distance model for unidimensional unfolding. In M. A. Fligner J. S. Verducci (Eds.), Probability Models and Statistical Analyses for Ranking Data (pp. 241–276)New York: Springer-VerlagGoogle Scholar
  48. Wagenaar W.A., Padmos P. (1971) Quantitative interpretation of Stress in Kruskal’s method multidimensional scaling technique. British Journal of Mathematical and Statistical Psychology, 24:101–110Google Scholar
  49. Winsberg, S., Carroll, J. D. (1989) A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model. Psychometrika, 54:217–229MathSciNetGoogle Scholar
  50. Young F. W. (1972) A model for polynomial conjoint analysis algorithms. In R.N. Shepard, A.K. Romney S.B. Nerlove (Eds.), Multidimensional Scaling, Theory(VOL I, pp 69–104)New YorkGoogle Scholar
  51. Young F.W., Torgerson W.S. (1967) T0RSCA, a Fortran IV program for Shepard-Kruskal multidimensional scaling analysis. Behavioral Science, 12:498Google Scholar

Copyright information

© The Psychometric Society 2005

Authors and Affiliations

  • Frank M. T. A. Busing
    • 1
    • 4
    Email author
  • Patrick J. K. Groenen
    • 2
  • Willem J. Heiser
    • 3
  1. 1.Leiden UniversityLeiden
  2. 2.Erasmus University RotterdamLeiden
  3. 3.Leiden UniversityLeiden
  4. 4.Department of PsychologyLeiden UniversityLeiden

Personalised recommendations