Advertisement

Maximal software execution time: a regression-based approach

  • Ayoub Nouri
  • Peter Poplavko
  • Lefteris Angelis
  • Alexandros Zerzelidis
  • Saddek Bensalem
  • Panagiotis Katsaros
S.I. : VECOS2017
  • 42 Downloads

Abstract

This work aims at facilitating the schedulability analysis of non-critical systems, in particular those that have soft real-time constraints, where worst-case execution times (WCETs) can be replaced by less stringent probabilistic bounds, which we call maximal execution times (METs). To this end, it is possible to obtain adequate probabilistic execution time models by separating the non-random dependency on input data from a modeling error that is purely random. The proposed approach first utilizes execution time multivariate measurements for building a multiple regression model and then uses the theory related to confidence bounds of coefficients, in order to estimate the upper bound of execution time. Although certainly our method cannot directly achieve extreme probability levels that are usually expected for WCETs, it is an attractive alternative for MET analysis, since it can arguably guarantee safe probabilistic bounds. The method’s effectiveness is demonstrated on a JPEG decoder running on an industrial SPARC V8 processor.

Keywords

WCET Linear regression Stepwise regression Principal component analysis JPEG 

References

  1. 1.
    Bernat G, Colin A, Petters SM (2002) WCET analysis of probabilistic hard real-time system. In: Proceedings of RTSS’02, IEEE, pp 279–288Google Scholar
  2. 2.
    Bernat G, Burns A, Newby M (2005) Probabilistic timing analysis: an approach using copulas. J Embed Comput 1(2):179–194Google Scholar
  3. 3.
    Betts A, Bernat G (2006) Tree-based WCET analysis on instrumentation point graphs. In: Proceedings of ISORC’06, IEEE, pp 558–565Google Scholar
  4. 4.
    Cucu-Grosjean L, Santinelli L, Houston M, Lo C, Vardanega T, Kosmidis L, Abella J, Mezzetti E, Quiñones E, Cazorla FJ (2012) Measurement-based probabilistic timing analysis for multi-path programs. In: Proceedings of ECRTS’12, IEEE, pp 91–101Google Scholar
  5. 5.
    Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, HobokenzbMATHGoogle Scholar
  6. 6.
    Eskenazi EM, Fioukov AV, Hammer DK (2004) Performance prediction for component compositions. In: CBSE’04, Springer, pp 280–293Google Scholar
  7. 7.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang L, Jia J, Yu B, Chun BG, Maniatis P, Naik M (2010) Predicting execution time of computer programs using sparse polynomial regression. In: Proceedings of NIPS’10, Curran Associates Inc., USA, pp 883–891Google Scholar
  9. 9.
    Jolliffe I (2002) Principal component analysis. Springer series in statistics. Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Lisper B, Santos M (2009) Model identification for WCET analysis. In: Proceedings of RTAS’09, IEEE, pp 55–64Google Scholar
  11. 11.
    Poplavko P, Nouri A, Angelis L, Zerzelidis A, Bensalem S, Katsaros P (2017) Regression-based statistical bounds on software execution time. In: Verification and evaluation of computer and communication systems—11th International conference, VECoS 2017, Montreal, QC, Canada, August 24–25, 2017, Proceedings, pp 48–63.  https://doi.org/10.1007/978-3-319-66176-6_4
  12. 12.
    Rapita Systems Ltd (2018) Rapitime. https://www.rapitasystems.com/products/rapitime. Accessed 4 June 2018
  13. 13.
    Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans Embed Comput Syst 7(3):36:1–36:53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering)GrenobleFrance
  2. 2.Mentor® A Siemens BusinessInovallee MontbonnotFrance
  3. 3.Information Technologies Institute, Centre of Research and Technology - HellasThessaloníkiGreece
  4. 4.Department of InformaticsAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations