The clock constraint specification language for building timed causality models

Application to synchronous data flow graphs
  • Frédéric Mallet
  • Julien DeAntoni
  • Charles André
  • Robert de Simone
Original Paper

Abstract

The uml Profile for Modeling and Analysis of Real-Time and Embedded (RTE) systems has recently been adopted by the OMG. Its Time Model extends the informal and simplistic Simple Time package proposed by Unified Modeling Language (UML2) and offers a broad range of capabilities required to model RTE systems including discrete/dense and chronometric/logical time. The Marte specification introduces a Time Structure inspired from several time models of the concurrency theory and proposes a new clock constraint specification language (ccsl) to specify, within the context of the uml, logical and chronometric time constraints. A semantic model in ccsl is attached to a (uml) model to give its timed causality semantics. In that sense, ccsl is comparable to the Ptolemy environment, in which directors give the semantics to models according to predefined models of computation and communication. This paper focuses on one historical model of computation of Ptolemy [Synchronous Data Flow (SDF)] and shows how to build SDF graphs by combining uml models and ccsl.

Keywords

CCSL SDF UML Marte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2): 183–235MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    André C (2009) Syntax and semantics of the clock constraint specification language (CCSL). Research report RR-6925, INRIA. http://hal.inria.fr/inria-00384077/en/
  3. 3.
    André C, Mallet F (2009) Specification and verification of time requirements with CCSL and esterel. In: LCTES. ACM, New York, pp 167–176Google Scholar
  4. 4.
    Behrmann G, David A, Larsen KG, Håkansson J, Pettersson P, Yi W, Hendriks M (2006) Uppaal 4.0. In: QEST. IEEE Computer Society, USA, pp 125–126Google Scholar
  5. 5.
    Benveniste A, le Guernic P, Jacquemot C (1991) Synchronous programming with events and relations: the signal language and its semantics. Sci Comput Program 16(2): 103–149MATHCrossRefGoogle Scholar
  6. 6.
    Börger E, Stärk R (2003) Abstract state machines: a method for high-level system design and analysis. Springer, HeidelbergMATHGoogle Scholar
  7. 7.
    Boulanger F, Hardebolle C (2008) Simulation of multi-formalism models with ModHel’X. In: ICST’08: international conference on software testing, verification, and validation. IEEE Computer Society, Washington, pp 318–327. doi:10.1109/ICST.2008.15
  8. 8.
    Bruel JM, Lilius J, Moreira AMD, France RB (2000) Defining precise semantics for uml. In: Malenfant J, Moisan S, Moreira AMD (eds) ECOOP workshops. Lecture notes in computer science, vol 1964. Springer, Heidelberg, pp 113–122Google Scholar
  9. 9.
    Chen K, Sztipanovits J, Neema S (2005) Toward a semantic anchoring infrastructure for domain-specific modeling languages. In: International conference on embedded software. ACM, New York, pp 35–43Google Scholar
  10. 10.
    Chiorean D, Pasca M, Cârcu A, Botiza C, Moldovan S (2004) Ensuring uml models consistency using the ocl environment. Electr Notes Theor Comput Sci 102: 99–110CrossRefGoogle Scholar
  11. 11.
    Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003) Taming heterogeneity—the ptolemy approach. Proc IEEE 91(1): 127–144CrossRefGoogle Scholar
  12. 12.
    Eshuis R (2006) Symbolic model checking of uml activity diagrams. ACM Trans Softw Eng Methodol 15(1): 1–38CrossRefGoogle Scholar
  13. 13.
    Frappier M, Gervais F, Laleau R, Fraikin B, St-Denis R (2008) Extending statecharts with process algebra operators. ISSE 4(3): 285–292Google Scholar
  14. 14.
    Gogolla M, Büttner F, Richters M (2007) Use: a uml-based specification environment for validating uml and ocl. Sci Comput Program 69(1–3): 27–34MATHCrossRefGoogle Scholar
  15. 15.
    Grieskamp W, Lepper M (2000) Using use cases in executable z. In: ICFEM, pp 111–120Google Scholar
  16. 16.
    Hoare C (1985) Communicating sequential processes. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  17. 17.
    Kahn G (1974) The semantics of a simple language for parallel programming. Information processing, pp 471–475Google Scholar
  18. 18.
    Karp RM, Miller RE (1966) Properties of a model for parallel computations: determinacy, termination, queueing. SIAM J Appl Math 14(6): 1390–1411. doi:10.1137/0114108 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7): 558–565MATHCrossRefGoogle Scholar
  20. 20.
    Mallet F, André C (2009) On the semantics of UML/MARTE clock constraints. In: ISORC. IEEE Computer Society, USA, pp 305–312Google Scholar
  21. 21.
    Muller PA, Fleurey F, Jézéquel JM (2005) Weaving executability into object-oriented meta-languages. In: MoDELS. Lecture notes in computer science, vol 3713. Springer, Heidelberg, pp 264–278Google Scholar
  22. 22.
    Object Management Group (2005) UML profile for schedulability, performance, and time specification. OMG document: formal/05-01-02 (v1.1)Google Scholar
  23. 23.
    Object Management Group (2006) Object constraint language. Version 2.0 formal/2006-05-11Google Scholar
  24. 24.
    Object Management Group (2007) Unified modeling language, superstructure. Version 2.1.2 formal/2007-11-02Google Scholar
  25. 25.
    Petri C (1987) Concurrency theory. In: Petri nets: central models and their properties. Lecture notes in computer science, vol 254. pp 4–24Google Scholar
  26. 26.
    Sinnig D, Chalin P, Khendek F (2009) Lts semantics for use case models. In: Shin SY, Ossowski S (eds) SAC. ACM, New York, pp 365–370Google Scholar
  27. 27.
    Störrle H (2005) Semantics and verification of data flow in UML 2.0 activities. Electr Notes Theor Comput Sci 127(4): 35–52CrossRefGoogle Scholar
  28. 28.
    Object Management Group (2009). UML Profile for MARTE, v1.0. formal/2009-11-02Google Scholar
  29. 29.
    Yang D, sheng Zhang S (2003) Using pi-calculus to formalize uml activity diagram. In: ECBS. IEEE Computer Society, USA, pp 47–54Google Scholar
  30. 30.
    Yu L, France RB, Ray I (2008) Scenario-based static analysis of uml class models. In: Czarnecki K, Ober I, Bruel JM, Uhl A, Völter M (eds) MoDELS. Lecture notes in computer science, vol 5301. Springer, Heidelberg, pp 234–248Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Frédéric Mallet
    • 1
  • Julien DeAntoni
    • 1
  • Charles André
    • 1
  • Robert de Simone
    • 2
  1. 1.Université de Nice Sophia Antipolis, Aoste Team-Project, INRIA-I3S-CNRSSophia Antipolis CedexFrance
  2. 2.INRIA Sophia Antipolis Méditerrannée, Aoste Team-Project, INRIA-I3S-CNRSSophia Antipolis CedexFrance

Personalised recommendations