Innovations in Systems and Software Engineering

, Volume 3, Issue 3, pp 157–165 | Cite as

High-performance Earth system modeling with NASA/GSFC’s Land Information System

  • C. D. Peters-Lidard
  • P. R. Houser
  • Y. Tian
  • S. V. Kumar
  • J. Geiger
  • S. Olden
  • L. Lighty
  • B. Doty
  • P. Dirmeyer
  • J. Adams
  • K. Mitchell
  • E. F. Wood
  • J. Sheffield
Original Paper


The Land Information System software (LIS;, 2006) has been developed to support high-performance land surface modeling and data assimilation. LIS integrates parallel and distributed computing technologies with modern land surface modeling capabilities, and establishes a framework for easy interchange of subcomponents, such as land surface physics, input/output conventions, and data assimilation routines. The software includes multiple land surface models that can be run as a multi-model ensemble on global or regional domains with horizontal resolutions ranging from 2.5° to 1 km. The software may execute serially or in parallel on various high-performance computing platforms. In addition, the software has well-defined, standard-conforming interfaces and data structures to interface and interoperate with other Earth system models. Developed with the support of an Earth science technology office (ESTO) computational technologies project round~3 cooperative agreement, LIS has helped advance NASA’s Earth–Sun division’s software engineering principles and practices, while promoting portability, interoperability, and scalability for Earth system modeling. LIS was selected as a co-winner of NASA’s 2005 software of the year award.


Land surface modeling Earth system modeling High-performance computing Information systems Object-oriented frameworks Weather Climate Ensemble Interoperability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumar SV, Peters-Lidard CD, Tian Y, Geiger J, Houser PR, Olden S, Lighty L, Eastman JL, Dirmeyer P, Doty B, Adams J, Wood E and Sheffield J (2006). LIS—an interoperable framework for high resolution land surface modeling. Environ Model Softw 21: 1402–1415 CrossRefGoogle Scholar
  2. 2.
    Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D and Toll D (2004). The global land data assimilation system. Bull Am Meteorol Soc 85(3): 381–394 CrossRefGoogle Scholar
  3. 3.
    Mitchell KE (2004). The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109: D07S90 doi:10.1029/2003JD003823CrossRefGoogle Scholar
  4. 4.
    Tao W-K, Simpson J, Baker D, Braun S, Chou M-D, Ferrier B, Johnson D, Khain A, Lang S, Lynn B, Shie C-L, Starr D, Sui C-H, Wang Y, Wetzel P (2003) Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol Atm Phys 82:1–4, 97–137. doi:10.1007/s00703-001-0594-7Google Scholar
  5. 5.
    Skamarock WC,Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2, NCAR/TN–468+STR, p 100Google Scholar
  6. 6.
    Henderson-Sellers A, Irannejad P, McGuffie K, Pitman A (2003) Predicting land-surface climates-better skill or moving targets? Geophys Res Lett 30:14, 1777. doi:10.1029/2003GL017387Google Scholar
  7. 7.
    Dirmeyer PA, Dolman AJ and Sato N (1999). The Global Soil Wetness Project: a pilot project for global land surface modeling and validation. Bull Am Meteorol Soc 80: 851–878 CrossRefGoogle Scholar
  8. 8.
    Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) The Second Global Soil Wetness Project (GSWP-2): multi-model analysis and implications for our perception of the land surface. Bull Am Meteorol Soc (in press)Google Scholar
  9. 9.
    Hill C, DeLuca C, Balaji V, Suarez M, da Silva A, and The ESMF Joint Specification (2004) The architecture of the Earth system modeling framework. Comput Sci Eng 6:18–28Google Scholar
  10. 10.
    Polcher J, McAvaney B, Viterbo P, Gaertner M-A, Hahmann A, Mahfouf J-F, Noilhan J, Phillips T, Pitman A, Schlosser CA, Schulz J-P, Timbal B, Verseghy D and Xue Y (1998). A proposal for a general interface between land-surface schemes and general circulation models. Glob Planet Change 19: 261–276 CrossRefGoogle Scholar
  11. 11.
    Guilyardi E, Budich R, Valcke S (2003) PRISM and ENES: a European approach to Earth System Modelling. In: Zwieflhofer W, Kreitz N (eds) Realizing teracomputing, Proceedings of the tenth ECMWF workshop on the use of high performance computing in meteorology. World Scientific, pp 146–164 (ISBN 981-238- 376-X)Google Scholar
  12. 12.
    Avissar R and Pielke RA (1989). A parameterization of heterogeneous land surfaces for atmospheric models and impact on regional meteorology. Mon Weather Rev 117(10): 2113–2136 CrossRefGoogle Scholar
  13. 13.
    Koster RD and Suarez MJ (1992). Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res 97(D3): 2697–2715 Google Scholar
  14. 14.
    Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G and Tarpley JD (2003). Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J Geophys Res 108(D22): 8851 doi:10.1029/2002JD003296 CrossRefGoogle Scholar
  15. 15.
    Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE and Yang Z-L (2002). The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15(22): 3123–3149 CrossRefGoogle Scholar
  16. 16.
    Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G-Y, Oleson KW, Schlosser CA and Yang Z-L (2003). The common land model (CLM). Bull Am Meteorol Soc 84(8): 1013–1024 CrossRefGoogle Scholar
  17. 17.
    Liang X, Wood EF and Lettenmaier D (1996). Surface and soil moisture parameterization of the VIC-2L model: evaluation and modifications. Glob Planet Change 13: 195–206 CrossRefGoogle Scholar
  18. 18.
    Koster RD, Suarez MJ (1996) Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, vol. 9, p 59 (Available from NASA/Center for Aerospace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090)Google Scholar
  19. 19.
    Mocko, David M, Sud YC (2001) Refinements to SSiB with an emphasis on snow physics: evaluation and validation using GSWP and valdai data, earth interactions 5(1):1–31. doi:10.1175/1087-3562(2001)005<0001:RTSWAE>2.0.CO;2Google Scholar
  20. 20.
    Gesch DB, Verdin KL and Greenlee SK (1999). New land surface digital elevation model covers the Earth. EOS Trans Am Geophys Union 80(6): 69–70 CrossRefGoogle Scholar
  21. 21.
    Hansen MC, DeFries RS, Townsend JRG and Sohlberg R (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21: 1331–1364 CrossRefGoogle Scholar
  22. 22.
    Myneni RB, Nemani RR and Running SW (1997). Algorithm for the estimation of global land cover. IEEE Trans Geosci Remote Sens 35: 1380–1393 CrossRefGoogle Scholar
  23. 23.
    Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR and Running SW (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83: 214–231 CrossRefGoogle Scholar
  24. 24.
    Gutman G and Ignatov A (1998). Derivation of green vegetation fraction from NOAA/AVHRR for use in numerical weather prediction models. Int J Remote Sens 19: 1533–1543 CrossRefGoogle Scholar
  25. 25.
    Reynolds CA, Jackson TJ and Rawls WJ (2000). Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36: 3653–3662 CrossRefGoogle Scholar
  26. 26.
    Miller DA and White RA (1998). A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact 2: 1–26 CrossRefGoogle Scholar
  27. 27.
    Cosgrove BA (2003). Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J Geophys Res 108(D22): 8842 doi:10.1029/2002JD003118 CrossRefGoogle Scholar
  28. 28.
    Baldwin M, Mitchell KE (1997) The NCEP hourly multi-sensor US precipitation analysis for operations and GCIP research. In: Preprints, 13th AMS conference on hydrology. Am Meteorol Soc. Boston, Mass, pp 54–55Google Scholar
  29. 29.
    Pinker RT (2003). Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J Geophys Res 108(D22): 8844 doi:10.1029/2002JD003301CrossRefGoogle Scholar
  30. 30.
    Daly C, Neilson RP and Phillips DL (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33: 140–158 CrossRefGoogle Scholar
  31. 31.
    Nykanen DK, Foufoula-Georgiou E and Lapenta WM (2001). Impact of small-scale rainfall variability on larger-scale spatial organization of land-atmosphere fluxes. J Hydrometeorol 2(2): 105–121 CrossRefGoogle Scholar
  32. 32.
    Rodell M, Chao BF, Au AY, Kimball J and McDonald K (2005). Global biomass variation and its geodynamic effects, 1982–1998. Earth Interact 9(2): 1–19 CrossRefGoogle Scholar
  33. 33.
    Zhan X, Houser PR, Walker JP, Crow WT (2006) A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and radar observations. IEEE Trans Geosci Remote Sens (in press) doi:10.1109/TGRS.2005.863319Google Scholar
  34. 34.
    Eastman J, Peters-Lidard C, Tao W, Kumar S, Tian Y, Lang SE, Zeng X, Houser P (2006) A meteorological model’s dependence on radiation update frequency, Submitted to Geophys Res LettGoogle Scholar
  35. 35.
    Kato H, Rodell M, Beyrich F, Cleugh H, van Gorsel E, Liu H, Meyers TP (2006) Sensitivity of land surface simulations to model physics, parameters, and forcings, at four CEOP sites, Submitted to J Meteor Soc JpnGoogle Scholar
  36. 36.
    Koike T, The coordinated enhanced observing period—an initial step for integrated water cycle observation. WMO Bull 53(2):115–121Google Scholar
  37. 37.
    Lawford R, Bosilovich M, Eden S, Benedict S, Brown C, Gruber A, Houser P, Meyers T, Mitchell K, Peters-Lidard C, Roads J, Rodell M, Tarpley D, Williams S (2006) US contributions to the Coordinated Enhanced Observing Period (CEOP). Submitted to the Bull Am Meteorol SocGoogle Scholar
  38. 38.
    Dirmeyer PA, Guo Z and Gao X (2004). Comparison, validation and transferability of eight multi-year global soil wetness products. J Hydrometeorol 5: 1011–1033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • C. D. Peters-Lidard
    • 1
  • P. R. Houser
    • 2
  • Y. Tian
    • 1
    • 3
  • S. V. Kumar
    • 1
    • 3
  • J. Geiger
    • 4
  • S. Olden
    • 4
  • L. Lighty
    • 4
  • B. Doty
    • 5
  • P. Dirmeyer
    • 5
  • J. Adams
    • 5
  • K. Mitchell
    • 6
  • E. F. Wood
    • 7
  • J. Sheffield
    • 7
  1. 1.Goddard Space Flight Center, Hydrological Sciences BranchNASAGreenbeltUSA
  2. 2.George Mason University and Center for Research in Environment and WaterCalvertonUSA
  3. 3.Goddard Earth Sciences Technology CenterUniversity of Maryland at Baltimore CountyBaltimoreUSA
  4. 4.Goddard Space Flight Center, Information Systems DivisionNASAGreenbeltUSA
  5. 5.Center for Ocean–Land–Atmosphere StudiesCalvertonUSA
  6. 6.NCEP Environmental Modeling CenterNOAA/NWSCamp SpringsUSA
  7. 7.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations