Advertisement

Sport Sciences for Health

, Volume 14, Issue 3, pp 463–473 | Cite as

Role of exercise in the mechanisms ameliorating hepatic steatosis in non-alcoholic fatty liver disease

  • J. A. Russell-Guzmán
  • L. KarachonEmail author
  • T. A. Gacitúa
  • A. Freundlich
  • C. E. Poblete-Aro
  • R. Rodrigo
Review
  • 140 Downloads

Abstract

Hepatic steatosis is an abnormal lipid accumulation within hepatocytes, generally present in non-alcoholic fatty liver disease (NAFLD) patients, a starting-point pathology currently associated with other clinical manifestations such as metabolic syndrome, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Hepatic steatosis in NAFLD may be induced by mechanisms such as insulin resistance, increased fatty acid uptake, a higher de novo lipogenesis from glucose or acetate, lower fatty acids oxidation and a decrease in fatty acid mobilization from liver. Among different therapeutic strategies appropriate for these patients, exercise has shown to be effective in reversing hepatic steatosis. However, the specific mechanisms involved in this response remain unclear. Therefore, the aim of this review is (1) to describe the mechanisms whereby exercise reverts hepatic steatosis, and (2) review the clinical outcomes of different exercise modalities in NAFLD parameters. Therefore, this knowledge may provide the basis suggesting potential clinical benefits of exercise as an adjunct therapy for patients with NAFLD and associated metabolic diseases.

Keywords

Non-alcoholic fatty liver disease Hepatic steatosis Exercise 

Notes

Acknowledgements

Supported by FONDEF, Grant ID15I10285.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors. Therefore, there were no informed consents to obtain.

References

  1. 1.
    Constanzo L (2011) Fisiología, 4th edn, chap 8. Elsevier, Barcelona, España (ISBN: 978-84-8086-824-2)Google Scholar
  2. 2.
    Adams LA, Angulo P (2005) Recent concepts in non-alcoholic fatty liver disease. Diabet Med 22(9) 1129–1133CrossRefGoogle Scholar
  3. 3.
    Adams LA, Angulo P, Lindor KD (2005) Nonalcoholic fatty liver disease. CMAJ 172(7):899–905CrossRefGoogle Scholar
  4. 4.
    Rector RS, Thyfault JP, Laye MJ, Morris RT, Borengasser SJ, Uptergrove GM, Chakravarthy MV, Booth FW, Ibdah JA (2008) Cessation of daily exercise dramatically alters precursors of hepatic steatosis in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. J Physiol 586(Pt 17):4241–4249CrossRefGoogle Scholar
  5. 5.
    Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, Ibdah JA (2008) Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 294(3) G619–G626CrossRefGoogle Scholar
  6. 6.
    Videla L, Rodrigo R, Orellana M, Fernandez V, Tapia G, Quiñones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J (2004) Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci 106(3):261–268CrossRefGoogle Scholar
  7. 7.
    Patrick-Melin AJ, Kalinski MI, Kelly KR, Haus JM, Solomon TPJ, Kirwan JP (1999) Nonalcoholic fatty liver disease: biochemical and therapeutic considerations. Ukraïnsʹkyĭ biokhimichnyĭ zhurnal 81(5):16–25Google Scholar
  8. 8.
    Tilg H, Kaser A (2005) Treatment strategies in nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 2(3):148–155CrossRefGoogle Scholar
  9. 9.
    Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS., Andraus W, Alves VA, Cogliati B, Vinken M (2015) Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 59:106–125CrossRefGoogle Scholar
  10. 10.
    Bouneva I, Kirby DF (2004) Management of nonalcoholic fatty liver disease: weight control. Clin Liver Dis 8(3) 693–713CrossRefGoogle Scholar
  11. 11.
    Katsanos CS (2004) Lipid-induced insulin resistance in the liver: role of exercise. Sports Med 34(14):955–965CrossRefGoogle Scholar
  12. 12.
    Perlemuter G, Bigorgne A, Cassard-Doulcier A-M, Naveau S (2007) Nonalcoholic fatty liver disease: from pathogenesis to patient care. Nat Clin Pract Endocrinol Metab 3(6):458–469CrossRefGoogle Scholar
  13. 13.
    DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163CrossRefGoogle Scholar
  14. 14.
    Pettinelli P, del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA (2009) Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta Mol Basis Dis 1792(11):1080–1086CrossRefGoogle Scholar
  15. 15.
    Sanders FWB, Griffin JL (2016) De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev 91(2):452–468CrossRefGoogle Scholar
  16. 16.
    Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Enjoji M, Takayanagi R, Nakamuta M (2008) SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med 21(4):507–511PubMedGoogle Scholar
  17. 17.
    Ferré P, Foufelle F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12(Suppl 2):83–92 (Figure 1) CrossRefGoogle Scholar
  18. 18.
    Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114(2):147–152CrossRefGoogle Scholar
  19. 19.
    Pettinelli P, Videla La (2011) Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab 96(5):1424–1430CrossRefGoogle Scholar
  20. 20.
    Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405(6785):421–424CrossRefGoogle Scholar
  21. 21.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–949CrossRefGoogle Scholar
  22. 22.
    Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50(5) 567–575CrossRefGoogle Scholar
  23. 23.
    Pessayre D (2007) Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 22(Suppl 1):S20–S27CrossRefGoogle Scholar
  24. 24.
    Flamment M, Kammoun HL, Hainault I, Ferré P, Foufelle F (2010) Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Curr Opin Lipidol 21(3):239–246CrossRefGoogle Scholar
  25. 25.
    Király MA, Campbell J, Park E, Bates HE, Yue JTY, Rao V, Matthews SG, Bikopoulos G, Rozakis-Adcock M, Giacca A, Vranic M, Riddell MC (2010) Exercise maintains euglycemia in association with decreased activation of c-Jun NH2-terminal kinase and serine phosphorylation of IRS-1 in the liver of ZDF rats. Am J Physiol Endocrinol Metab 298(3):E671–E682CrossRefGoogle Scholar
  26. 26.
    Park HS, Kim MW, Shin ES (1995) Effect of weight control on hepatic abnormalities in obese patients with fatty liver. J Korean Med Sci 10(6):414–421CrossRefGoogle Scholar
  27. 27.
    Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, Tamaki S, Torimura T, Inuzuka S, Sata M, Tanikawa K (1997) Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J Hepatol 27(1)103–107CrossRefGoogle Scholar
  28. 28.
    Magkos F (2010) Exercise and fat accumulation in the human liver. Curr Opin Lipidol 21(6)507–517CrossRefGoogle Scholar
  29. 29.
    Gauthier M-S, Couturier K, Latour J-G, Lavoie J-M (2003) Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol 94(6):2127–2134CrossRefGoogle Scholar
  30. 30.
    Camacho RC, Donahue EP, James FD, Berglund ED, Wasserman DH (2006) Energy state of the liver during short-term and exhaustive exercise in C57BL/6J mice. Am J Physiol Endocrinol Metab 290(3) E405–E408CrossRefGoogle Scholar
  31. 31.
    Trefts E, Williams AS, Wasserman DH (2015) Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci 135:203–225CrossRefGoogle Scholar
  32. 32.
    Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK (2003) AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand 178(4):435–442CrossRefGoogle Scholar
  33. 33.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY-J, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced Insulin-resistant mice. Cell Metab 13(4):376–388CrossRefGoogle Scholar
  34. 34.
    Cintra DE, Ropelle ER, Vitto MF, Luciano TF, Souza DR, Engelmann J, Marques SO, Lira FS, De Pinho Ra, Pauli JR, De Souza CT (2012) Reversion of hepatic steatosis by exercise training in obese mice: the role of sterol regulatory element-binding protein-1c. Life Sci 91(11–12) :395–401CrossRefGoogle Scholar
  35. 35.
    Alex S, Boss A, Heerschap A, Kersten S (2015) Exercise training improves liver steatosis in mice. Nutr Metab (Lond) 12(1):29CrossRefGoogle Scholar
  36. 36.
    Vitto MF, Luz G, Luciano TF, Marques SO, Souza DR, Pinho RA, Lira FS, Cintra DE, De Souza CT (2012) Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice. Horm Metab Res 44(12):885–890CrossRefGoogle Scholar
  37. 37.
    Rector RS, Uptergrove GM, Morris EM, Borengasser SJ, Laughlin MH, Booth FW, Thyfault JP, Ibdah JA (2011) Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol 300(5):G874–G883CrossRefGoogle Scholar
  38. 38.
    Linden MA, Fletcher JA, Morris EM, Meers GM, Laughlin MH, Booth FW, Sowers JR, Ibdah JA, Thyfault JP, Rector RS (2015) Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc 47(3):556–567CrossRefGoogle Scholar
  39. 39.
    Hu X, Duan Z, Hu H, Li G, Yan S, Wu J, Wang J, Yin D, Xie Q (2013) Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.” Proteomics 13(10–11):1755–1764CrossRefGoogle Scholar
  40. 40.
    Lea W, Abbas AS, Sprecher H, Vockley J, Schulz H (2000) Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta 1485(2–3):121–128CrossRefGoogle Scholar
  41. 41.
    Oh S, Tanaka K, Warabi E, Shoda J (2013) Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Med Sci Sports Exerc 45(12) 2214–2222CrossRefGoogle Scholar
  42. 42.
    Mitranun W, Deerochanawong C, Tanaka H, Suksom D (2014) Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sport 24(2):69–76CrossRefGoogle Scholar
  43. 43.
    Brandauer J, Andersen MA, Kellezi H, Risis S, Frøsig C, Vienberg SG, Treebak JT (2015) AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol 6:85CrossRefGoogle Scholar
  44. 44.
    Charbonneau A, Unson CG, Lavoie J-M (2007) High-fat diet-induced hepatic steatosis reduces glucagon receptor content in rat hepatocytes: potential interaction with acute exercise. J Physiol 579(Pt 1):255–267CrossRefGoogle Scholar
  45. 45.
    Charbonneau A, Melancon A, Lavoie C, Lavoie J-M (2005) Alterations in hepatic glucagon receptor density and in Gsalpha and Gialpha2 protein content with diet-induced hepatic steatosis: effects of acute exercise. Am J Physiol Endocrinol Metab 289(1)E8–E14CrossRefGoogle Scholar
  46. 46.
    Charbonneau A, Couturier K, Gauthier M-S, Lavoie J-M (2005) Evidence of hepatic glucagon resistance associated with hepatic steatosis: reversal effect of training. Int J Sports Med 26(6):432–441CrossRefGoogle Scholar
  47. 47.
    Berglund ED, Lustig DG, Baheza RA, Hasenour CM, Lee-young RS, Donahue EP, Lynes SE, Swift LL, Charron MJ, Damon BM, Wasserman DH (2011) Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver. Diabetes 60(11):2720–2729CrossRefGoogle Scholar
  48. 48.
    Longuet C, Sinclair EM, Maida A, Baggio LL, Maziarz M, Charron MJ, Drucker DJ (2008) The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8(5):359–371CrossRefGoogle Scholar
  49. 49.
    Pedersen BK, Febbraio Ma (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465CrossRefGoogle Scholar
  50. 50.
    Marra F, Bertolani C (2009) Adipokines in liver diseases. Hepatology 50(3)957–969CrossRefGoogle Scholar
  51. 51.
    Raschke S, Eckel J (2013) Adipo-myokines: two sides of the same coin–mediators of inflammation and mediators of exercise. Mediators Inflamm 2013:320724CrossRefGoogle Scholar
  52. 52.
    Stefan N, Häring H-U (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 9(3):144–152CrossRefGoogle Scholar
  53. 53.
    Heinrichsdorff J, Olefsky JM (2012) Fetuin-A: the missing link in lipid-induced inflammation. Nat Med 18(8):1182–1183CrossRefGoogle Scholar
  54. 54.
    Malin SK, Mulya A, Fealy CE, Haus JM, Pagadala MR, Scelsi AR, Huang H, Flask CA, McCullough AJ, Kirwan JP (Oct. 2013) Fetuin-A is linked to improved glucose tolerance after short-term exercise training in nonalcoholic fatty liver disease. J Appl Physiol 115(7):988–994CrossRefGoogle Scholar
  55. 55.
    Haus JM, Solomon TPJ, Kelly KR, Fealy CE, Kullman EL, Scelsi AR, Lu L, Pagadala MR, McCullough AJ, Flask CA, Kirwan JP (2013) Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 98(7):E1181–E1188CrossRefGoogle Scholar
  56. 56.
    Passos MCF, Gonçalves MC (2014) Regulation of insulin sensitivity by adiponectin and its receptors in response to physical exercise. Horm Metab Res 46(9):603–608CrossRefGoogle Scholar
  57. 57.
    Park M-J, Kim D-I, Choi J-H, Heo Y-R, Park S-H (2015) New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal 27(9):1831–1839CrossRefGoogle Scholar
  58. 58.
    Batirel S, Bozaykut P, Mutlu Altundag E, Kartal N, Ozer, Mantzoros CS (2014) The effect of Irisin on antioxidant system in liver. Free Radic Biol Med 75(Suppl 1):S16CrossRefGoogle Scholar
  59. 59.
    Hansen J, Pedersen B, Xu G, Lehmann R, Weigert C, Plomgaard P (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101(7):2816–2825CrossRefGoogle Scholar
  60. 60.
    Owen B, Mangelsdorf J, Kliewer S (2015) Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 26(No. 1):22–29.CrossRefGoogle Scholar
  61. 61.
    Xu J, Lloyd D, Hale C, Stanislaus S, Chen M, Sivits G, Chen J (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1)250–259.CrossRefGoogle Scholar
  62. 62.
    Whitsett M, VanWagner LB (2015) Physical activity as a treatment of non-alcoholic fatty liver disease: a systematic review. World J Hepatol 7(16):2041–2052CrossRefGoogle Scholar
  63. 63.
    Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL, Weir JM, Kiens B, Meikle PJ, Febbraio Ma, Henstridge DC (2015) Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. Am J Physiol Endocrinol Metab 308(9):E778–E791CrossRefGoogle Scholar
  64. 64.
    Cuthbertson DJ, Shojaee-Moradie F, Sprung VS, Jones H, Pugh CJA, Richardson P, Kemp GJ, Barrett M, Jackson NC, Thomas EL, Bell JD, Umpleby AM (2016) Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 130(2):93–104CrossRefGoogle Scholar
  65. 65.
    Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP, Trenell MI (2015) Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond) 129(12):1097–1105CrossRefGoogle Scholar
  66. 66.
    Sanchez-Munoz V, Salas-Romero R, Del Villar-Morales A, Martinez-Coria E, Pegueros-Perez A, Franco-Sanchez JG (2013) Decrease of liver fat content by aerobic exercise or metformin therapy in overweight or obese women. Rev Invest Clin 65(4):307–317PubMedGoogle Scholar
  67. 67.
    Shojaee-Moradie F, Cuthbertson DJ, Barrett M, Jackson NC, Herring R, Thomas EL, Bell J, Kemp GJ, Wright J, Umpleby AM (2016) Exercise training reduces liver fat and increases rates of VLDL Clearance but not VLDL production in NAFLD. J Clin Endocrinol Metab 101(11):4219–4228CrossRefGoogle Scholar
  68. 68.
    Zhang H-J, He J, Pan L-L, Ma Z-M, Han C-K, Chen C-S, Chen Z, Han H-W, Chen S, Sun Q, Zhang J-F, Li Z-B, Yang S-Y, Li X-J, Li X-Y (2016) Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med 176(8):1074–1082CrossRefGoogle Scholar
  69. 69.
    Balducci S, Cardelli P, Pugliese L, D’Errico V, Haxhi J, Alessi E, Iacobini C, Menini S, Bollanti L, Conti FG, Nicolucci A, Pugliese G (2015) Volume-dependent effect of supervised exercise training on fatty liver and visceral adiposity index in subjects with type 2 diabetes The Italian Diabetes Exercise Study (IDES). Diabetes Res Clin Pract 109(2):355–363CrossRefGoogle Scholar
  70. 70.
    Zelber-Sagi S, Buch A, Yeshua H, Vaisman N, Webb M, Harari G, Kis O, Fliss-Isakov N, Izkhakov E, Halpern Z, Santo E, Oren R, Shibolet O (2014) Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol 20(15):4382–4392CrossRefGoogle Scholar
  71. 71.
    Abd El-Kader SM, Al-Shreef FM, Al-Jiffri OH (2016) Biochemical parameters response to weight loss in patients with non-alcoholic steatohepatitis. Afr Health Sci 16(1):242–249CrossRefGoogle Scholar
  72. 72.
    Bacchi E, Negri C, Targher G, Faccioli N, Lanza M, Zoppini G, Zanolin E, Schena F, Bonora E, Moghetti P (2013) Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology 58(4):1287–1295CrossRefGoogle Scholar
  73. 73.
    Shamsoddini A, Sobhani V, Ghamar Chehreh ME, Alavian SM, Zaree A (2015) Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in iranian men with nonalcoholic fatty liver disease. Hepat Mon 15(10):e31434CrossRefGoogle Scholar
  74. 74.
    de Piano A, de Mello MT, P de L Sanches, da Silva PL, Campos RMS, Carnier J, Corgosinho F, Foschini D, Masquio DL, Tock L, Oyama LM, da do CMPO Nascimento, Tufik S, Damaso AR (2012) Long-term effects of aerobic plus resistance training on the adipokines and neuropeptides in nonalcoholic fatty liver disease obese adolescents. Eur J Gastroenterol Hepatol 24(11):1313–1324PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • J. A. Russell-Guzmán
    • 1
    • 2
  • L. Karachon
    • 3
    Email author
  • T. A. Gacitúa
    • 3
  • A. Freundlich
    • 3
  • C. E. Poblete-Aro
    • 3
    • 4
    • 5
  • R. Rodrigo
    • 3
  1. 1.Faculty of Medicine, Center for Molecular Studies of the Cell, Institute of Biomedical SciencesUniversity of ChileSantiagoChile
  2. 2.Faculty of Education, School of Physical EducationUniversidad Autónoma de ChileSantiagoChile
  3. 3.Laboratory of Oxidative Stress and Nephrotoxicity, Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical SciencesUniversity of ChileSantiagoChile
  4. 4.Laboratory of Physical Activity, Sport and Health, Faculty of Medical SciencesUniversity of SantiagoSantiagoChile
  5. 5.Faculty of Education, School of Physical EducationUniversidad de las Américas UDLASantiagoChile

Personalised recommendations