Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Metabolic indicators and energy expenditure in two models of health club classes: aerobic fitness class vs. strength fitness class

Abstract

Purpose

This study was designed to analyze the differences in metabolic indicators and energy expenditure (EE) between two models of health club fitness classes: Aerobic Fitness Class (AFC) and Strength Fitness Class (SFC).

Methods

Fifteen adult women (mean ± standard deviation: age, 29.0 ± 3.3 years; height, 161.8 ± 4.8 cm; body mass index, 21.5 ± 1.6 kg/m2) participated in the present study. Maximum oxygen uptake (VO2max) and maximum heart rate (HRmax) were measured directly during a maximal treadmill test. During AFC and SFC sessions, heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER), metabolic equivalents (MET), percentage of fat oxidation (%FAT), percentage of carbohydrate oxidation (%CHO) and EE were assessed by indirect calorimetry using a portable gas analyzer (K4b2). Student’s paired samples t test was used to analyze differences between AFC and SFC. Significance level was set at 5%. Effect sizes (Cohen’s d) were observed.

Results

There were greater values during AFC in comparison with SFC on the following variables: VO2 (1959.3 ± 273.2 vs. 1122.7 ± 187.7 ml kg−1 min−1; p < 0.001; ES = 3.69); HR (161 ± 14 vs. 133 ± 17 bpm; p < 0.001; ES = 1.86); MET (10.0 ± 1.2 vs. 5.8 ± 0.9 MET; p < 0.001; ES = 4.1); total EE (259.6 ± 24.9 vs. 151.7 ± 22.3 kcal; p < 0.001; ES = 4.73);  %VO2max (76.9 ± 8.6 vs. 44.3 ± 8.1%; p < 0.001; ES = 4.04);  %HRmax (84.2 ± 5.8 vs. 69.7 ± 7.9%; p < 0.001; ES = 2.17) and CHO oxidation rate (139.9 ± 16 vs. 82.4 ± 13.8 kcal h−1; p < 0.001; ES = 3.98). Further, CHO was the main substrate for both classes.

Conclusion

These results suggest that AFC induces greater EE than SFC. Moreover, engaging AFC or SFC 3–5 times a week seems enough to achieve international physical activity recommendations per week to promote several health benefits. Finally, carbohydrate is the main energy supply for both types of fitness classes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Katzmarzyk PT, Church TS, Craig CL, Bouchard C (2009) Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 41(5):998–1005

  2. 2.

    Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ (2012) Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 55(11):2895–2905

  3. 3.

    Garcia LM, da Silva KS, Del Duca GF, da Costa FF, Nahas MV (2014) Sedentary behaviors, leisure-time physical inactivity, and chronic diseases in Brazilian workers: a cross sectional study. J Phys Act Health 8:1622–1634

  4. 4.

    Blair SN, Sallis RE, Hutber A, Archer E (2012) Exercise therapy—the public health message. Scand J Med Sci Sports 22(4):e24–28

  5. 5.

    Pérez AB (2008) Exercise as the cornerstone of cardiovascular prevention. Rev Esp Cardiol (Engl Ed) 61(5):514–528

  6. 6.

    Carvalho T, Nóbrega ACL, Lazzoli JK, Magni JRT, Rezende L, Drummond FA, Oliveira MAB, De Rose EH, Araújo CGS, Teixeira JAC (1996) Posição oficial da sociedade brasileira de medicina do esporte: atividade física e saúde. Rev Bras Med Esporte 2(4):79–81

  7. 7.

    World Health Organization (2010). Global Recommendations on Physical Activity for Health. Geneve

  8. 8.

    Blair SN, Morris JN (2009) Healthy hearts and the universal benefits of being physically active: physical activity and health. Ann Epidemiol 19(4):253–256

  9. 9.

    Laskowski ER (2012) The role of exercise in the treatment of obesity. PM & R 4(11):840–844

  10. 10.

    Foulds HJ, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE (2014) Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol 114(8):1563–1571

  11. 11.

    Filardo RD, Leite N (2001) Perfil dos indivíduos que iniciam programas de exercícios em academias, quanto à composição corporal e aos objetivos em relação à faixa etária e sexo. Rev Bras Med Esporte 7(2):57–61

  12. 12.

    Oliveira CEP, Moreira OC, Pereira LS, Doimo LA (2013) Efeito de oito semanas de treinamento de ginástica localizada sobre a composição corporal de mulheres sedentárias. Rev Bras Ciênc Mov 21(3):135–141

  13. 13.

    Garber C, Blissmer B, Deschenes M, Franklin B, Lamonte M, Lee I-M, Nieman D, Swain D (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

  14. 14.

    Perantoni CB, Derez CS, Lauria AA, Lima JP, Novaes JS (2009) Análise da intensidade de uma sessão de jump training. Fit Perform J 8(4):286–290

  15. 15.

    Vianna VRA, Damasceno VO, Vianna JM, Bottaro M, Lima JRPL, Novaes JS (2005) Relação entre freqüência cardíaca e consumo de oxigênio durante uma aula de “Step Training”. Rev Bras Ciênc Mov 13(1):29–36

  16. 16.

    Furtado E, Simão R, Lemos A (2004) Análise do consumo de oxigênio, freqüência cardíaca e dispêndio energético, durante as aulas do Jump Fit. Rev Bras Med Esporte 10(5):371–375

  17. 17.

    Luettgen M, Foster C, Doberstein S, Mikat R, Porcari J (2012) Zumba((R)): is the “fitness-party” a good workout? J Sports Sci Med 11(2):357–358

  18. 18.

    Denadai BS, Ruas VDA, Figueira TR (2005) Efeito da cadência de pedalada sobre as respostas metabólica e cardiovascular durante o exercício incremental e de carga constante em indivíduos ativos. Rev Bras Med Esporte 11(5):286–290

  19. 19.

    Franco SCA, Rodrigues JJF, Balcells MC (2008) Pedagogic Behavior of the Instructors of Group of Localized Fitness. Fit & Perf J 7(4):251–263

  20. 20.

    Girardi GF, Brentano MA, Tagliari M, Gomes MGS, Dornelles M, Kruel LFM (2009) Estimativa de diferentes volumes e intensidades na prescrição de exercícios em aulas de ginástica localizada. Br J Biomotricity 3(3):287–299

  21. 21.

    Garganta R (2000) Caracterização do esforço e efeitos induzidos pela prática de actividades de academia na aptidão física e no auto-conceito físico: estudo realizado em adultos jovens do sexo feminino praticantes de ginástica aeróbica, musculação e cardiofitness. Universidade do Porto, Porto, Tese

  22. 22.

    Balbinotti MAA, Capozzoli CJ (2008) Motivação à prática regular de atividade física: um estudo exploratório com praticantes em academias de ginástica. Rev Bras Educ Fís Esp 22(1):63–80

  23. 23.

    Santos SC, Knijnik JD (2009) Motivos de adesão à prática de atividade física na vida adulta intermediária. Rev Mackenzie Educ Fís Esporte 5(1):23–24

  24. 24.

    Rufino VS, Soares LFS, Santos DL (2013) Características de freqüentadores de academias de ginástica do Rio Grande do Sul. Kinesis 22:58–68

  25. 25.

    Zaletel P, Gabrilo G, Peric M (2013) The training effects of dance aerobics: a review with an emphasis on the perspectives of investigations. Coll Antropol 37(Suppl 2):125–130

  26. 26.

    Wilmore JH, Parr RB, Ward P, Vodak PA, Barstow TJ, Pipes TV, Grimditch G, Leslie P (1978) Energy cost of circuit weight training. Med Sci Sports 10(2):75–78

  27. 27.

    Elia M, Livesey G (1992) Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev Nutr Diet 70:68–131

  28. 28.

    Phillips WT, Ziuraitis JR (2003) Energy cost of the ACSM single-set resistance training protocol. J Strength Cond Res 17(2):350–355

  29. 29.

    Hausswirth C, Bigard AX, Le Chevalier JM (1997) The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 18(6):449–453

  30. 30.

    McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (1999) Assesment of the Cosmed K4b2 portable metabolic system. Med Sci Sports Exerc 31(5):S286

  31. 31.

    Noakes TD, Myburgh KH, Schall R (1990) Peak treadmill running velocity during the VO2 max test predicts running performance. J Sports Sci 8(1):35–45

  32. 32.

    Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262(17):2395–2401

  33. 33.

    Batterham A, Hopkins W (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57

  34. 34.

    Meirelles CM, Gomes PSC (2004) Efeitos agudos da atividade contra-resistência sobre o gasto energético: revisitando o impacto das principais variáveis. Rev Bras Med Esporte 10(2):122–138

  35. 35.

    Phillips WT, Ziuraitis JR (2004) Energy cost of single-set resistance training in older adults. J Strength Cond Res 18(3):606–609

  36. 36.

    Garber CE, McKinney JS, Carleton RA (1992) Is aerobic dance an effective alternative to walk-jog exercise training? J Sports Med Phys Fitness 32(2):136–141

  37. 37.

    Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W, Heath GW, King AC et al (1995) Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273(5):402–407

  38. 38.

    Grossl T, Guglielmo LGA, Carminatti LJ, Silva JF (2008) Determinação da intensidade da aula de power jump por meio da freqüência cardíaca. Rev Bras Cineantropom Desempenho Hum 10(2):129–136

  39. 39.

    Monteiro AG, Silva SG, Arruda M (2012) Aspectos metabólicos e cardiorrespiratórios na ginástica aeróbica. Rev Bras Ativ Fís Saúde 3(4):42–48

  40. 40.

    Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J (1985) Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88(5):1707–1714

  41. 41.

    Valizadeh A, Khosravi A, Azmoon HR (2011) Fat oxidation rate during and after three exercise intensities in non-athlete young men. World Appl Sci J 15(9):1260

  42. 42.

    Matarese LE (1997) Indirect calorimetry: technical aspects. J Am Diet Assoc 97(10 Suppl 2):S154–160

  43. 43.

    Goedecke JH, St Clair Gibson A, Grobler L, Collins M, Noakes TD, Lambert EV (2000) Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am J Physiol Endocrinol Metab 279(6):E1325–1334

  44. 44.

    Achten J, Jeukendrup AE (2003) Maximal fat oxidation during exercise in trained men. Int J Sports Med 24(8):603–608

  45. 45.

    Christmass MA, Dawson B, Arthur PG (1999) Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise. Eur J Appl Physiol Occup Physiol 80(5):436–447

  46. 46.

    Price M, Halabi K (2005) The effects of work-rest duration on intermittent exercise and subsequent performance. J Sports Sci 23(8):835–842

  47. 47.

    Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28–37

  48. 48.

    Romijn JA, Coyle EF, Hibbert J, Wolfe RR (1992) Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am J Physiol 263(1 Pt 1):E64–71

  49. 49.

    Mendonça CP, Dos Anjos LA (2004) Dietary and physical activity factors as determinants of the increase in overweight/obesity in Brazil. Cad Saúde Pública 20(3):698–709

  50. 50.

    Hunter GR, Weinsier RL, Bamman MM, Larson DE (1998) A role for high intensity exercise on energy balance and weight control. Int J Obes Relat Metab Disord 22(6):489–493

  51. 51.

    Brockman L, Berg K, Latin R (1993) Oxygen uptake during recovery from intense intermittent running and prolonged walking. J Sports Med Phys Fitness 33(4):330–336

  52. 52.

    Imamura H, Shibuya S, Uchida K, Teshima K, Masuda R, Miyamoto N (2004) Effect of moderate exercise on excess post-exercise oxygen consumption and catecholamines in young women. J Sports Med Phys Fitness 44(1):23–29

  53. 53.

    Foureaux G, Pinto KMC, Dâmaso A (2006) Effects of excess post-exercise oxygen consumption and resting metabolic rate in energetic cost. Rev Bras Med Esporte 12(6):393–398

  54. 54.

    Costa RR, Lima Alberton C, Tagliari M, Martins Kruel LF (2011) Effects of resistance training on the lipid profile in obese women. J Sports Med Phys Fitness 51(1):169–177

Download references

Author information

Correspondence to Marcelo Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All studies performed involving human participants were in accordance with the ethical standards of the Scientific Council of the Faculty of Sport from the University of Porto and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, M., Franchini, E., Ribeiro, J.C. et al. Metabolic indicators and energy expenditure in two models of health club classes: aerobic fitness class vs. strength fitness class. Sport Sci Health 14, 339–346 (2018). https://doi.org/10.1007/s11332-018-0438-1

Download citation

Keywords

  • Carbohydrate oxidation
  • Energy consumption
  • Fat oxidation
  • Group class