Sleep and Breathing

, Volume 23, Issue 1, pp 227–233 | Cite as

Metoprolol has a similar therapeutic effect as amlodipine on BP lowering in hypertensive patients with obstructive sleep apnea

  • Jing Shi
  • Yue Yuan
  • Xianzhu Deng
  • Yujiao Pan
  • Meijiao He
  • Guangzhong Liu
  • Danghui Sun
  • Jiayu Wang
  • Wennan Wang
  • Yue LiEmail author
Sleep Breathing Physiology and Disorders • Original Article



β-Blocker use has been controversial for a long time in the management of hypertensive patients with obstructive sleep apnea (OSA). The aim of present study was to compare the effects of metoprolol on BP lowering with amlodipine in hypertensive OSA patients.


Hypertensive subjects with OSA were randomly assigned to metoprolol and amlodipine groups, receiving 12 weeks of oral either metoprolol (47.5 mg once daily) or amlodipine (5 mg once daily) treatment. At baseline and after the 12-week treatment period, 24-h ambulatory blood pressure monitoring was performed in both groups.


Both of metoprolol and amlodipine treatments significantly lowered 24-h blood pressure (BP) (from 143/88 to 132.3/81.6 mmHg; from 141.3/84.5 to 133.7/80.8 mmHg), daytime BP (from 146/90.2 to 136.4/84.6 mmHg; from 145.1/87.6 to 138.2/84.1 mmHg), and nighttime BP (from 139.1/83.9 to 125.7/76.2 mmHg; from 134.5/78.5 to 125.8/74.1 mmHg) (all P < 0.05). But there were no significant differences between the groups in BP variability (P > 0.05). Besides, metoprolol significantly reduced daytime heart rate (HR) (P < 0.05), while 24-h and nighttime HR values had no remarkable changes compared with baseline (P > 0.05).


Metoprolol had similar therapeutic effects on BP lowering as amlodipine and could not decrease HR during the nighttime in hypertensive patients with OSA.


β1-Blockers Calcium channel blockers Obstructive sleep apnea Hypertension Blood pressure 


Funding information

National Basic Research Program of China (973 program), National Natural Science Foundation of China, Heilongjiang Province Outstanding Youth Foundation, the Technology Research and Development Program of Heilongjiang Province, and Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang provided financial support in the form of Nos. 2014CB542401, 81470462, 81670297, JC201208, GA14C101, and 2013CJHB001. The sponsor had no role in the design or conduct of this research.

Compliance with ethical standards

The study was approved by the Ethics Committee of the First Affiliated Hospital of Harbin Medical University ( identifier: NCT02408172)

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5(2):136–143CrossRefGoogle Scholar
  2. 2.
    Sova M, Sovova E, Hobzova M, Zapletalova J, Kamasova M, Kolek V (2015) The effect of continuous positive airway pressure therapy on the prevalence of masked hypertension in obstructive sleep apnea patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(2):277–282CrossRefGoogle Scholar
  3. 3.
    Marcus JA, Pothineni A, Marcus CZ, Bisognano JD (2014) The role of obesity and obstructive sleep apnea in the pathogenesis and treatment of resistant hypertension. Curr Hypertens Rep 16:411CrossRefGoogle Scholar
  4. 4.
    Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlöf B, Poulter NR, Sever PS, ASCOT-BPLA and MRC Trial Investigators (2010) Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol 9(5):469–480CrossRefGoogle Scholar
  5. 5.
    Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P (2014) Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res 37(6):585–590CrossRefGoogle Scholar
  6. 6.
    Webb AJ, Fischer U, Mehta Z, Rothwell PM (2010) Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 375(9718):906–915CrossRefGoogle Scholar
  7. 7.
    Zhao J, Xu W, Yun F, Zhao H, Li W, Gong Y, Yuan Y, Yan S, Zhang S, Ding X, Wang D, Zhang C, Dong D, Xiu C, Yang N, Liu L, Xue J, Li Y (2014) Chronic obstructive sleep apnea causes atrial remodeling in canines: mechanisms and implications. Basic Res Cardiol 109(5):427CrossRefGoogle Scholar
  8. 8.
    Ding X, Yu C, Liu Y, Yan S, Li W, Wang D, Sun L, Han Y, Li M, Zhang S, Yun F, Zhao H, Li Y (2016) Chronic obstructive sleep apnea accelerates pulmonary remodeling via TGF-β/miR-185/CoLA1 signaling in a canine model. Oncotarget 7(36):57545–57555CrossRefGoogle Scholar
  9. 9.
    Yu C, Liu Y, Sun L, Wang D, Wang Y, Zhao S, Dai H, Zhao J, Zhang S, Li M, Han Y, Lu S, Dong X, Liu G, Yu S, Li Y (2017) Chronic obstructive sleep apnea promotes aortic remodeling in canines through miR-145/Smad3 signaling pathway. Oncotarget 8(23):37705–37716CrossRefGoogle Scholar
  10. 10.
    Li W, Yan S, Zhao J, Ding X, Zhang S, Wang D, Liu L, Peng W, Li H, Wang D, Liu Z, Li Y (2015) Metoprolol inhibits cardiac apoptosis and fibrosis in a canine model of chronic obstructive sleep apnea. Cell Physiol Biochem 36(3):1131–1141CrossRefGoogle Scholar
  11. 11.
    Zakopoulos NA, Tsivgoulis G, Barlas G, Papamichael C, Spengos K, Manios E, Ikonomidis I, Kotsis V, Spiliopoulou I, Vemmos K, Mavrikakis M, Moulopoulos SD (2005) Time rate of blood pressure variation is associated with increased common carotid artery intima-media thickness. Hypertension 45:505–512CrossRefGoogle Scholar
  12. 12.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, de Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, de Buyzere M, de Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219CrossRefGoogle Scholar
  13. 13.
    Xiong H, Wu D, Tian X, Lin WH, Li C, Zhang H, Cai Y, Zhang YT. The relationship between the 24 h blood pressure variability and carotid intima-media thickness: a compared study. Comput Math Methods Med 2014;2014:303159, 1, 9Google Scholar
  14. 14.
    Shi J, Piao J, Liu B, Pan Y, Gong Y, Deng X, Sun W, Lu S, Li Y (2017) Obstructive sleep apnea increases systolic and diastolic blood pressure variability in hypertensive patients. Blood Press Monit 22(4):208–212CrossRefGoogle Scholar
  15. 15.
    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S (2011) The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension 57(2):160–166CrossRefGoogle Scholar
  16. 16.
    Camargo S, Riedl M, Anteneodo C, Kurths J, Penzel T, Wessel N (2014) Sleep apnea-hypopnea quantification by cardiovascular data analysis. PLoS One 9:e107581CrossRefGoogle Scholar
  17. 17.
    Abuzaid AS, Al Ashry HS, Elbadawi A, Ld H, Saad M, Elgendy IY et al (2017) Meta-analysis of cardiovascular outcomes with continuous positive airway pressure therapy in patients with obstructive sleep apnea. Am J Cardiol 120(4):693–699CrossRefGoogle Scholar
  18. 18.
    Shiina K, Tomiyama H, Takata Y, Matsumoto C, Odaira M, Kato K, Yamaguchi T, Usui Y, Yamashina A (2016) Obstructive sleep apnea as possible causal factor for visit-to-visit blood pressure variability. Circ J 80(8):1787–1794CrossRefGoogle Scholar
  19. 19.
    Pengo MF, Ratneswaran C, Berry M, Kent BD, Kohler M, Rossi GP, Steier J (2016) Effect of continuous positive airway pressure on blood pressure variability in patients with obstructive sleep apnea. J Clin Hypertens (Greenwich) 18(11):1180–1184CrossRefGoogle Scholar
  20. 20.
    Abe H, Takahashi M, Yaegashi H, Eda S, Tsunemoto H, Kamikozawa M, Koyama J, Yamazaki K, Ikeda U (2010) Efficacy of continuous positive airway pressure on arrhythmias in obstructive sleep apnea patients. Heart Vessel 25(1):63–69CrossRefGoogle Scholar
  21. 21.
    Schein AS, Kerkhoff AC, Coronel CC, Plentz RD, Sbruzzi G (2014) Continuous positive airway pressure reduces blood pressure in patients with obstructive sleep apnea; a systematic review and meta-analysis with 1000 patients. J Hypertens 32(9):1762–1773CrossRefGoogle Scholar
  22. 22.
    Muxfeldt ES, Margallo V, Costa LM, Guimarães G, Cavalcante AH, Azevedo JC, de Souza F, Cardoso CR, Salles GF (2015) Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension 65(4):736–742CrossRefGoogle Scholar
  23. 23.
    Weaver TE, Grunstein RR (2008) Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5(2):173–178CrossRefGoogle Scholar
  24. 24.
    Miller WP (1982) Cardiac arrhythmias and conduction disturbances in the sleep apnea syndrome. Prevalence and significance. Am J Med 73(3):317–321CrossRefGoogle Scholar
  25. 25.
    Guilleminault C, Connolly SJ, Winkle RA (1983) Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. Am J Cardiol 52(5):490–494CrossRefGoogle Scholar
  26. 26.
    Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, Sahadevan J, Redline S, Sleep Heart Health Study (2006) Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med 173(8):910–916CrossRefGoogle Scholar
  27. 27.
    Grau N, Bazan V, Kallouchi M, Rodriguez D, Estirado C, Corral MI, Valls MT, Ramos P, Sanjuas C, Felez M, Valles E, Benito B, Gea J, Bruguera-Cortada J, Martí-Almor J (2016) Long-term impact of continuous positive airway pressure therapy on arrhythmia and heart rate variability in patients with sleep apnea. Arch Bronconeumol 52(1):17–23CrossRefGoogle Scholar
  28. 28.
    Wolf J, Drozdowski J, Czechowicz K, Winklewski PJ, Jassem E, Kara T, Somers VK, Narkiewicz K (2016) Effect of beta-blocker therapy on heart rate response in patients with hypertension and newly diagnosed untreated obstructive sleep apnea syndrome. Int J Cardiol 202:67–72CrossRefGoogle Scholar
  29. 29.
    Fogari R, Zoppi A, Tettamanti F, Poletti L, Rizzardi G, Fiocchi G (1990) Comparative effects of celiprolol, propranolol, oxprenolol, and atenolol on respiratory function in hypertensive patients with chronic obstructive lung disease. Cardiovasc Drugs Ther 4(4):1145–1149CrossRefGoogle Scholar
  30. 30.
    Tivenius L (1976) Effects of multiple doses of metoprolol and propranolol on ventilatory function in patients with chronic obstructive lung disease. Scand J Respir Dis 57(4):190–196Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiovascular Department, The First Affiliated HospitalHarbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Institute of Metabolic DiseaseHeilongjiang Academy of Medical ScienceHarbinPeople’s Republic of China

Personalised recommendations