Cycle length identifies obstructive sleep apnea and central sleep apnea in heart failure with reduced ejection fraction

  • Thomas Bitter
  • Burak Özdemir
  • Henrik Fox
  • Dieter Horstkotte
  • Olaf Oldenburg
Sleep Breathing Physiology and Disorders • Original Article
  • 30 Downloads

Abstract

Aim

To clarify whether unmasking of central sleep apnea during continuous positive airway pressure (CPAP) initiation can be identified from initial diagnostic polysomnography (PSG) in patients with heart failure with reduced ejection fraction (HFREF) and obstructive sleep apnea (OSA)

Materials and methods

Forty-three consecutive patients with obstructive sleep apnea and central sleep apnea (OSA/CSA) in HFREF were matched with 43 HFREF patients with OSA and successful CPAP initiation. Obstructive apneas during diagnostic PSG were then analyzed for cycle length (CL), ventilation length (VL), apnea length (AL), time to peak ventilation (TTPV), and circulatory delay (CD). We calculated duty ratio (DR) as the ratio of VL/CL and mathematic loop gain (LG).

Results

While AL was similar, CL, VL, TTPV, CD, and DR was significantly longer in patients with OSA/CSA compared to those with OSA, and LG was significantly higher. Receiver operator curves identified optimal cutoff values of 50.2 s for CL (area under the curve (AUC) 0.85, 29.2 s for VL (AUC 0.92), 11.5 s for TTPV (AUC 0.82), 26.4 s for CD (AUC 0.79), and 3.96 (AUC 0.78)) respectively for LG to identify OSA/CSA.

Conclusion

OSA/CSA in HFREF can be identified by longer CL, VL, TTPV, and CD from obstructive events in initial diagnostic PSG. The underlying mechanisms seem to be the presence of an increased LG.

Keywords

Sleep apnea Heart failure Treatment-emergent central sleep apnea Cycle length Complex sleep apnea 

Notes

Compliance with ethical standards

The study was approved by the Ethical Review Board of the Ruhr University, Bochum, and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

Olaf Oldenburg reports personal fees from ResMed, personal fees from LivaNova, personal fees from Novartis, and personal fees from Bayer, outside the submitted work. The other authors declare that they have no conflicts of interest.

References

  1. 1.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200CrossRefPubMedGoogle Scholar
  2. 2.
    Arzt M, Woehrle H, Oldenburg O, Graml A, Suling A, Erdmann E, Teschler H, Wegscheider K, SchlaHF Investigators (2016) Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF registry. JACC Heart Fail 4:116–125CrossRefPubMedGoogle Scholar
  3. 3.
    Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257CrossRefPubMedGoogle Scholar
  4. 4.
    Levy P, Ryan S, Oldenburg O, Parati G (2013) Sleep apnoea and the heart. Eur Respir Rev 22:333–352CrossRefPubMedGoogle Scholar
  5. 5.
    Oldenburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, Horstkotte D, Wegscheider K (2016) Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J 37:1695–1703CrossRefPubMedGoogle Scholar
  6. 6.
    Bitter T, Westerheide N, Prinz C, Hossain MS, Vogt J, Langer C, Horstkotte D, Oldenburg O (2011) Cheyne-Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J 32:61–74CrossRefPubMedGoogle Scholar
  7. 7.
    Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, Yamaguchi T, Momomura SI (2008) Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest 133:690–696CrossRefPubMedGoogle Scholar
  8. 8.
    Randerath WJ, Nothofer G, Priegnitz C, Anduleit N, Treml M, Kehl V, Galetke W (2012) Long-term auto-servoventilation or constant positive pressure in heart failure and coexisting central with obstructive sleep apnea. Chest 142:440–447CrossRefPubMedGoogle Scholar
  9. 9.
    Bitter T, Westerheide N, Hossain MS, Lehmann R, Prinz C, Kleemeyer A, Horstkotte D, Oldenburg O (2011) Complex sleep apnoea in congestive heart failure. Thorax 66:402–407CrossRefPubMedGoogle Scholar
  10. 10.
    Wedewardt J, Bitter T, Prinz C, Faber L, Horstkotte D, Oldenburg O (2010) Cheyne-Stokes respiration in heart failure: cycle length is dependent on left ventricular ejection fraction. Sleep Med 11:137–142CrossRefPubMedGoogle Scholar
  11. 11.
    Efken C, Bitter T, Prib N, Horstkotte D, Oldenburg O (2013) Obstructive sleep apnoea: longer respiratory event lengths in patients with heart failure. Eur Respir J 41:1340–1346CrossRefPubMedGoogle Scholar
  12. 12.
    Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, O'Driscoll DM, Hamilton GS, Naughton MT, Berger PJ (2011) Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 184:1067–1075CrossRefPubMedGoogle Scholar
  13. 13.
    Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, Buyse B, de Backer W, Eckert DJ, Grote L, Hagmeyer L, Hedner J, Jennum P, la Rovere MT, Miltz C, McNicholas WT, Montserrat J, Naughton M, Pepin JL, Pevernagie D, Sanner B, Testelmans D, Tonia T, Vrijsen B, Wijkstra P, Levy P (2017) Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J 49:1600959CrossRefPubMedGoogle Scholar
  14. 14.
    Mayer G et al (2017) S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen–Kapitel “Schlafbezogene Atmungsstörungen”. Somnologie 20:597–S180Google Scholar
  15. 15.
    Mayer G, Rodenbeck A, Geisler P, Schulz H (2015) International classification of sleep disorders: overview of the changes in ICSD-3. Somnologie 19:116–125CrossRefGoogle Scholar
  16. 16.
    Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, American Academy of Sleep Medicine (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8:597–619PubMedPubMedCentralGoogle Scholar
  17. 17.
    Stanchina M, Robinson K, Corrao W, Donat W, Sands S, Malhotra A (2015) Clinical use of loop gain measures to determine continuous positive airway pressure efficacy in patients with complex sleep apnea: a pilot study. Ann Am Thorac Soc 12:1351–1357CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oldenburg O (2012) Cheyne-Stokes respiration in chronic heart failure. Circ J 76:2305–2317CrossRefPubMedGoogle Scholar
  19. 19.
    Hall M et al (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154:376–381CrossRefPubMedGoogle Scholar
  20. 20.
    Solin P, Roebuck T, Swieca J, Walters E, Naughton M (1998) Effects of cardiac dysfunction on non-hypercapnic central sleep apnea. Chest 113:104–110CrossRefPubMedGoogle Scholar
  21. 21.
    Ryan C, Bradley T (2005) Periodicity of obstructive sleep apnea in patients with and without heart failure. Chest 127:536–542CrossRefPubMedGoogle Scholar
  22. 22.
    Oldenburg O, Bitter T, Wiemer M, Langer C, Horstkotte D, Piper C (2009) Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med 10:726–730CrossRefPubMedGoogle Scholar
  23. 23.
    Agostoni P (2008) Mechanisms of periodic breathing during exercise in patients with chronic heart failure<xref rid=‘AFF1’>*</xref>. Chest J 133:197–203CrossRefGoogle Scholar
  24. 24.
    Rubin A, Gottlieb S, Gold A, Schwartz A, Smith P (2004) The role of feedback delay in periodic breathing. Thorax 59:174–177CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Churchill E, Cope O, Churchill E, Cope O (1929) The rapid shallow breathing resulting from pulmonary congestion and edema. ( From the Surgical Laboratories, Massachusetts General Host ~ tal, Boston.) ( Received for publication, December 12, 1928.) Experimental studies by Dunn ( 1 ) demonstrated. J Exp Med 49:531–537CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT (1999) Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99:1574–1579CrossRefPubMedGoogle Scholar
  27. 27.
    Yiu KH et al (2008) Alleviation of pulmonary hypertension by cardiac resynchronization therapy is associated with improvement in central sleep apnea. Pacing Clin Electrophysiol 31:1522–1527CrossRefPubMedGoogle Scholar
  28. 28.
    Dernaika T, Tawk M, Nazir S, Younis W, Kinasewitz GT (2007) Pressure-related central sleep apnea the significance and outcome of continuous positive airway pressure-related central sleep apnea during split-night sleep studies. Chest 132:81–87CrossRefPubMedGoogle Scholar
  29. 29.
    Javaheri S, Smith J, Chung E (2009) The prevalence and natural history of complex sleep apnea. J Clin Sleep Med 5:205–211PubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu D, Armitstead J, Benjafield A, Shao S, Malhotra A, Cistulli PA, Pepin JL, Woehrle H (2017) Trajectories of emergent central sleep apnea during CPAP therapy. Chest 152:751–760CrossRefPubMedGoogle Scholar
  31. 31.
    Morgenthaler TI, Kuzniar TJ, Wolfe LF, Willes L, McLain WC III, Goldberg R (2014) The complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapy. Sleep 37:927–934CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Bitter
    • 1
  • Burak Özdemir
    • 1
  • Henrik Fox
    • 1
  • Dieter Horstkotte
    • 1
  • Olaf Oldenburg
    • 1
  1. 1.Clinic for Cardiology, Herz- und Diabeteszentrum NRWRuhr-Universität BochumBad OeynhausenGermany

Personalised recommendations