Advertisement

Sleep and Breathing

, Volume 21, Issue 3, pp 737–744 | Cite as

Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea

  • Clemens Heiser
  • Phillippe Fthenakis
  • Alexander Hapfelmeier
  • Sebastian Berger
  • Benedikt Hofauer
  • Winfried Hohenhorst
  • Eberhard F. Kochs
  • Klaus J. Wagner
  • Guenther M. Edenharter
ENT • Original Article

Abstract

Background

Drug-induced sleep endoscopy (DISE) has become an important diagnostic examination tool in the treatment decision process for surgical therapies in the treatment of obstructive sleep apnea (OSA). Currently, there is a variety of regimes for the performance of DISE, which renders comparison and assessment across results difficult. It remains unclear how the different regimes influence the findings of the examination and the resulting conclusions and treatment recommendations. This study aimed to investigate the correlation between increasing levels of sedation (i.e., light, medium, and deep) induced by propofol using a target-controlled infusion (TCI) pump, with the obstruction patterns at the levels of the velum, oropharynx, tongue base, and epiglottis (i.e., VOTE classification). A second goal was the establishment of a sufficient sedation level to enable a reliable decision regarding treatment recommendations.

Material and methods

Forty-three patients with OSA underwent a DISE procedure using propofol TCI. Three levels of sedation were defined, depending on entropy levels and assessment of sedation: light sedation, medium sedation, and deep sedation. The evaluation of the upper airway at each level, with increasing sedation, was documented using the VOTE classification. The elapsed time at which each assessment was performed was recorded.

Results

Upper airway changes occurred and were measured throughout the DISE procedure. Clinically useful determinations of airway closure occurred at medium sedation; this level of sedation was most probably achieved with a blood propofol concentration of 3.2 μg/ml. In all 43 patients, definite treatment decisions could be made at medium sedation level. Increasing sedation did not result in changes in the treatment decision.

Conclusions

Changes in upper airway collapse during DISE with propofol TCI occur at levels of medium sedation. Decisions regarding surgical treatment could be made at this level of sedation.

Clinical trial name

Upper Airway Collapse in Patients with Obstructive Sleep Apnea Syndrome by Drug Induced Sleep Endoscopy (URL: https://clinicaltrials.gov/ct2/results?term=NCT02588300&Search=Search)

Registration number

NCT02588300

Keywords

Obstructive sleep apnea OSAS Anesthesia Sedation Drug-induced sleep endoscopy procedure DISE 

Notes

Compliance with ethical standards

Conflict of interest

Clemens Heiser is a consultant of Inspire Medical Systems (Maple Grove USA) and Sutter Medizintechnik GmbH (Freiburg, Germany). He received personal fees from Neuwirth Medical Products (Obernburg, Germany) and Heinen und Lösenstein (Bad Ems, Germany). Benedikt Hofauer received grants and research support from Inspire Medical Systems (Maple Grove USA).

Eberhard F. Kochs received grants and research support from the Federal Ministry of Educations and Research (Bonn, Germany) and German Research Foundation (Bonn, Germany).

Guenther M. Edenharter is a consultant of AbbVie GmbH & Co.KG (Wiesbaden, Germany).

Alexander Hapfelmeir, Phillippe Fthenakis, Sebastian Berger, Winfried Hohenhorst, and Klaus J. Wagner declare that they have no conflict of interests.

The article submitted is not related to any of these relationships.

Financial support

No financial support for this trial

References

  1. 1.
    Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Strollo PJ Jr, Rogers RM (1996) Obstructive sleep apnea. N Engl J Med 334(2):99–104CrossRefPubMedGoogle Scholar
  3. 3.
    Lee W, Nagubadi S, Kryger MH, Mokhlesi B (2008) Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev Respir Med 2(3):349–364CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang X, Ouyang Y, Wang Z, Zhao G, Liu L, Bi Y (2013) Obstructive sleep apnea and risk of cardiovascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. Int J Cardiol 169(3):207–214CrossRefPubMedGoogle Scholar
  5. 5.
    Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053CrossRefPubMedGoogle Scholar
  6. 6.
    Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, Stubbs R, Hla KM (2008) Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 31(8):1071–1078PubMedPubMedCentralGoogle Scholar
  7. 7.
    Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ (2006) Continuous positive airways pressure for obstructive sleep apnoea in adults. The Cochrane Database of Systematic Reviews (3):Cd001106Google Scholar
  8. 8.
    Heiser C, Sommer JU, Stern-Straeter J, Tillmann HC, Hörmann K, Maurer JT, Stuck BA (2010) Einfluss der Atemluftbefeuchtung auf die Akzeptanz der CPAP-Therapie bei Patienten mit obstruktiver Schlafapnoe. Somnologie 14(4):282–290CrossRefGoogle Scholar
  9. 9.
    Weaver TE (2013) Don’t start celebrating—CPAP adherence remains a problem. J Clin Sleep Med 9(6):551–552PubMedPubMedCentralGoogle Scholar
  10. 10.
    Weaver TE, Grunstein RR (2008) Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5(2):173–178. doi: 10.1513/pats.200708-119MG CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ravesloot MJ, de Vries N, Stuck BA (2014) Treatment adherence should be taken into account when reporting treatment outcomes in obstructive sleep apnea. Laryngoscope 124(1):344–345CrossRefPubMedGoogle Scholar
  12. 12.
    De Vito A, Carrasco Llatas M, Vanni A, Bosi M, Braghiroli A, Campanini A, de Vries N, Hamans E, Hohenhorst W, Kotecha BT, Maurer J, Montevecchi F, Piccin O, Sorrenti G, Vanderveken OM, Vicini C (2014) European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath 18(3):453–465CrossRefPubMedGoogle Scholar
  13. 13.
    Croft CB, Pringle M (1991) Sleep nasendoscopy: a technique of assessment in snoring and obstructive sleep apnoea. Clin Otolaryngol Allied Sci 16(5):504–509CrossRefPubMedGoogle Scholar
  14. 14.
    Eastwood PR, Szollosi I, Platt PR, Hillman DR (2002) Comparison of upper airway collapse during general anaesthesia and sleep. Lancet 359(9313):1207–1209CrossRefPubMedGoogle Scholar
  15. 15.
    Gillespie MB, Reddy RP, White DR, Discolo CM, Overdyk FJ, Nguyen SA (2013) A trial of drug-induced sleep endoscopy in the surgical management of sleep-disordered breathing. Laryngoscope 123(1):277–282CrossRefPubMedGoogle Scholar
  16. 16.
    Koutsourelakis I, Safiruddin F, Ravesloot M, Zakynthinos S, de Vries N (2012) Surgery for obstructive sleep apnea: sleep endoscopy determinants of outcome. Laryngoscope 122(11):2587–2591CrossRefPubMedGoogle Scholar
  17. 17.
    Rabelo FA, Braga A, Kupper DS, De Oliveira JA, Lopes FM, de Lima Mattos PL, Barreto SG, Sander HH, Fernandes RM, Valera FC (2010) Propofol-induced sleep: polysomnographic evaluation of patients with obstructive sleep apnea and controls. Otolaryngol Head Neck Surgery 142(2):218–224CrossRefGoogle Scholar
  18. 18.
    Rabelo FA, Kupper DS, Sander HH, Fernandes RM, Valera FC (2013) Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope 123(9):2300–2305CrossRefPubMedGoogle Scholar
  19. 19.
    Kezirian EJ, Hohenhorst W, de Vries N (2011) Drug-induced sleep endoscopy: the VOTE classification. Eur Arch Otorhinolaryngol 268(8):1233–1236CrossRefPubMedGoogle Scholar
  20. 20.
    Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88(5):1170–1182CrossRefPubMedGoogle Scholar
  21. 21.
    Hastie T., Tibshirani R, Friedman J. (2009) The elements of statistical learning: data mining, inference, and prediction, Second Edition. 2. Edition edn. Springer, New YorkGoogle Scholar
  22. 22.
    Grubinger T, Zeileis A, Pfeiffer K-P (2014) evtree: evolutionary learning of globally optimal classification and regression trees in R. 2014 61 (1):29Google Scholar
  23. 23.
    Atkins JH, Mandel JE, Rosanova G (2014) Safety and efficacy of drug-induced sleep endoscopy using a probability ramp propofol infusion system in patients with severe obstructive sleep apnea. Anesth Analg 119(4):805–810CrossRefPubMedGoogle Scholar
  24. 24.
    Carrasco Llatas M, Agostini Porras G, Cuesta Gonzalez MT, Rodrigo Sanbartolome A, Giner Bayarri P, Gomez-Pajares F, Dalmau Galofre J (2014) Drug-induced sleep endoscopy: a two drug comparison and simultaneous polysomnography. Eur Arch Otorhinolaryngol 271(1):181–187CrossRefPubMedGoogle Scholar
  25. 25.
    De Vito A, Agnoletti V, Berrettini S, Piraccini E, Criscuolo A, Corso R, Campanini A, Gambale G, Vicini C (2011) Drug-induced sleep endoscopy: conventional versus target controlled infusion techniques—a randomized controlled study. Eur Arch Otorhinolaryngol 268(3):457–462CrossRefPubMedGoogle Scholar
  26. 26.
    Ravesloot MJ, de Vries N (2011) One hundred consecutive patients undergoing drug-induced sleep endoscopy: results and evaluation. Laryngoscope 121(12):2710–2716CrossRefPubMedGoogle Scholar
  27. 27.
    Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW (2016) The history of target-controlled infusion. Anesth Analg 122(1):56–69CrossRefPubMedGoogle Scholar
  28. 28.
    Shafer SL, Egan T (2016) Target-controlled infusions: surfing USA redux. Anesth Analg 122(1):1–3CrossRefPubMedGoogle Scholar
  29. 29.
    Short TG, Hannam JA, Laurent S, Campbell D, Misur M, Merry AF, Tam YH (2016) Refining target-controlled infusion: an assessment of pharmacodynamic target-controlled infusion of propofol and remifentanil using a response surface model of their combined effects on bispectral index. Anesth Analg 122(1):90–97CrossRefPubMedGoogle Scholar
  30. 30.
    Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM (2016) Target-controlled infusion: a mature technology. Anesth Analg 122(1):70–78CrossRefPubMedGoogle Scholar
  31. 31.
    Schnider TW, Minto CF, Struys MM, Absalom AR (2016) The safety of target-controlled infusions. Anesth Analg 122(1):79–85CrossRefPubMedGoogle Scholar
  32. 32.
    Gray JM, Kenny GN (1998) Development of the technology for ‘Diprifusor’ TCI systems. Anaesthesia 53(Suppl 1):22–27CrossRefPubMedGoogle Scholar
  33. 33.
    Hillman DR, Walsh JH, Maddison KJ, Platt PR, Kirkness JP, Noffsinger WJ, Eastwood PR (2009) Evolution of changes in upper airway collapsibility during slow induction of anesthesia with propofol. Anesthesiology 111(1):63–71CrossRefPubMedGoogle Scholar
  34. 34.
    Schmidt GN, Bischoff P, Standl T, Hellstern A, Teuber O, Schulte Esch J (2004) Comparative evaluation of the Datex-Ohmeda S/5 entropy module and the bispectral index monitor during propofol-remifentanil anesthesia. Anesthesiology 101(6):1283–1290CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Clemens Heiser
    • 1
  • Phillippe Fthenakis
    • 2
  • Alexander Hapfelmeier
    • 3
  • Sebastian Berger
    • 2
  • Benedikt Hofauer
    • 1
  • Winfried Hohenhorst
    • 4
  • Eberhard F. Kochs
    • 2
  • Klaus J. Wagner
    • 2
  • Guenther M. Edenharter
    • 2
  1. 1.Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of Anesthesiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Institute of Medical Statistics and EpidemiologyTechnische Universität MünchenMunichGermany
  4. 4.Department of Otorhinolaryngology, Head and Neck SurgeryAlfried-Krupp-KrankenhausEssenGermany

Personalised recommendations