Sleep and Breathing

, Volume 22, Issue 1, pp 233–240 | Cite as

Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea

  • Nazia Khan
  • Geralyn Lambert-Messerlian
  • Joao Filipe Monteiro
  • Julius Hodosy
  • Ľubomíra Tóthová
  • Peter Celec
  • Elizabeth Eklund
  • Patrizia Curran
  • Ghada BourjeilyEmail author
Epidemiology • Original Article



Pregnant women are particularly susceptible to sleep-disordered breathing. Obstructive sleep apnea (OSA) in pregnancy is associated with poor pregnancy and fetal outcomes. Oxidative stress caused by intermittent hypoxemia and reoxygenation may impact pregnancy health. We hypothesize that pregnant women with OSA have a pronounced oxidative stress profile.


A case-control study was performed to study oxidative stress markers in the serum of pregnant women with or without OSA. Patients with OSA were identified between 2003 and 2009. Contemporaneous controls were pregnant subjects without apnea, gasping, or snoring around the time of delivery. Serum markers of oxidative and carbonyl stress were measured by spectrophotometric/fluorometric methods. Multiple linear regression analysis was used with a model including age, body mass index at delivery, history of diabetes, and gestational age.


Serum samples from 23 OSA cases and 41 controls were identified. Advanced oxidation protein products, a marker for oxidative stress, and advanced glycation end products (AGEs), a marker for carbonyl stress, were significantly lower in women with OSA than in controls (p value <0.0001). Total antioxidant capacity was higher in women with OSA in comparison to controls (p value <0.0001). The difference in AGEs remained significant even after adjusting for confounders.


Contrary to our hypothesis, the results of this study suggest that pregnant women with OSA have higher antioxidant capacity and lower oxidative and carbonyl stress markers compared to controls, suggesting a possible protective effect of intermittent hypoxia. Whether OSA in pregnancy impacts oxidative stress differently than OSA in the general population remains to be confirmed.


Oxidative stress Carbonyl stress Obstructive sleep apnea Sleep-disordered breathing Pregnancy 


Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speakers’ bureaus, membership, employment, consultancies, stock ownership or other equity interest, and expert testimony or patent-licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript. GB received research equipment support from Respironics for a federally funded study; however, Respironics had no role in the current study.

Human and animal rights and informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants prospectively recruited into the study. Waiver of consent was obtained for the retrospective component of the study. Both were IRB approved.


GB received funding from NIH R01HL130702 and R01HD078515 and Perkins Charitable Foundation. The Perkins Foundation had no role in study design, conduct, interpretation, or submission of the manuscript.


  1. 1.
    Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE (2004) Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 160(6):521–530. doi: 10.1093/aje/kwh261 CrossRefPubMedGoogle Scholar
  2. 2.
    Gottlieb DJ, Redline S, Nieto FJ, Baldwin CM, Newman AB, Resnick HE et al (2006) Association of usual sleep duration with hypertension: the Sleep Heart Health Study. Sleep 29(8):1009–1014CrossRefPubMedGoogle Scholar
  3. 3.
    Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O’Connor GT, Resnick HE et al (2010) Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 182(2):269–277. doi: 10.1164/rccm.200911-1746OC CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J. 33(6):1467–1484. doi: 10.1183/09031936.00086608 CrossRefPubMedGoogle Scholar
  5. 5.
    Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM (2009) Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ 108(5):246–249PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bourjeily G, Raker CA, Chalhoub M, Miller MA (2010) Pregnancy and fetal outcomes of symptoms of sleep-disordered breathing. Eur Respir J 36(4):849–855. doi: 10.1183/09031936.00021810 CrossRefPubMedGoogle Scholar
  7. 7.
    O’Brien LM, Bullough AS, Owusu JT, Tremblay KA, Brincat CA, Chames MC et al (2012) Pregnancy-onset habitual snoring, gestational hypertension, and preeclampsia: prospective cohort study. Am J Obstet Gynecol 207(6):487.e1–487.e9. doi: 10.1016/j.ajog.2012.08.034 CrossRefGoogle Scholar
  8. 8.
    Louis J, Auckley D, Miladinovic B, Shepherd A, Mencin P, Kumar D et al (2012) Perinatal outcomes associated with obstructive sleep apnea in obese pregnant women. Obstet Gynecol 120(5):1085–1092. doi: 10.1097/AOG.0b013e31826eb9d8 PubMedGoogle Scholar
  9. 9.
    Reutrakul S, Zaidi N, Wroblewski K, Kay HH, Ismail M, Ehrmann DA et al (2013) Interactions between pregnancy, obstructive sleep apnea, and gestational diabetes mellitus. J Clin Endocrinol Metab 98(10):4195–4202. doi: 10.1210/jc.2013-2348 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Louis JM, Mogos MF, Salemi JL, Redline S, Salihu HM (2014) Obstructive sleep apnea and severe maternal-infant morbidity/mortality in the United States, 1998-2009. Sleep 37(5):843–849. doi: 10.5665/sleep.3644 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jurkovicova I, Celec P, Mucska I, Hodosy J (2003) On the origin of cardiovascular complications of sleep apnea syndrome by the means of molecular interactions. Bratisl Lek Listy 104(4–5):167–173PubMedGoogle Scholar
  12. 12.
    Ellis EM (2007) Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther 115(1):13–24. doi: 10.1016/j.pharmthera.2007.03.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Clerici G, Slavescu C, Fiengo S, Kanninen TT, Romanelli M, Biondi R et al (2012) Oxidative stress in pathological pregnancies. J Obstet Gynaecol 32(2):124–127. doi: 10.3109/01443615.2011.637139 CrossRefPubMedGoogle Scholar
  14. 14.
    Eisele HJ, Markart P, Schulz R (2015) Obstructive sleep apnea, oxidative stress, and cardiovascular disease: evidence from human studies. Oxidative Med Cell Longev 2015:608438. doi: 10.1155/2015/608438 CrossRefGoogle Scholar
  15. 15.
    Jurkovicova I, Celec P (2004) Sleep apnea syndrome and its complications. Acta Med Austriaca 31(2):45–50PubMedGoogle Scholar
  16. 16.
    Yamauchi M, Nakano H, Maekawa J, Okamoto Y, Ohnishi Y, Suzuki T et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679. doi: 10.1378/chest.127.5.1674 CrossRefPubMedGoogle Scholar
  17. 17.
    Ravishankar S, Bourjeily G, Lambert-Messerlian G, He M, De Paepe ME, Gundogan F (2015) Evidence of placental hypoxia in maternal sleep disordered breathing. Pediatr Dev Pathol 18(5):380–386. doi: 10.2350/15-06-1647-OA.1 CrossRefPubMedGoogle Scholar
  18. 18.
    Celec P, Jurkovicova I, Buchta R, Bartik I, Gardlik R, Palffy R et al (2013) Antioxidant vitamins prevent oxidative and carbonyl stress in an animal model of obstructive sleep apnea. Sleep Breath 17(2):867–871. doi: 10.1007/s11325-012-0728-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Sanchis-Gomar F, Vina J, Lippi G (2012) Intermittent hypobaric hypoxia applicability in myocardial infarction prevention and recovery. J Cell Mol Med 16(5):1150–1154. doi: 10.1111/j.1582-4934.2011.01508.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vogtel M, Michels A (2010) Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 10(3):206–213. doi: 10.1097/ACI.0b013e32833903a6 CrossRefPubMedGoogle Scholar
  21. 21.
    Bourjeily G, Butterfield K, Curran P, Lambert-Messerlian G (2015) Obstructive sleep apnea is associated with alterations in markers of fetoplacental wellbeing. J Matern Fetal Neonatal Med 28(3):262–266. doi: 10.3109/14767058.2014.913131 CrossRefPubMedGoogle Scholar
  22. 22.
    Bourjeily G, Curran P, Butterfield K, Maredia H, Carpenter M, Lambert-Messerlian G (2015) Placenta-secreted circulating markers in pregnant women with obstructive sleep apnea. J Perinat Med 43(1):81–87. doi: 10.1515/jpm-2014-0052 CrossRefPubMedGoogle Scholar
  23. 23.
    Maislin G, Pack AI, Kribbs NB, Smith PL, Schwartz AR, Kline LR et al (1995) A survey screen for prediction of apnea. Sleep 18(3):158–166CrossRefPubMedGoogle Scholar
  24. 24.
    Tothova L, Hodosy J, Mucska I, Celec P (2014) Salivary markers of oxidative stress in patients with obstructive sleep apnea treated with continuous positive airway pressure. Sleep Breath 18(3):563–570. doi: 10.1007/s11325-013-0919-z CrossRefPubMedGoogle Scholar
  25. 25.
    Bourjeily G, Mazer J, Paglia M (2013) Outcomes of sleep disordered breathing in pregnancy. Open Sleep J 6(Suppl 1: M4):28–36. doi: 10.2174/1874620901306010028 CrossRefGoogle Scholar
  26. 26.
    Izci-Balserak B, Pien GW (2014) The relationship and potential mechanistic pathways between sleep disturbances and maternal hyperglycemia. Curr Diab Rep 14(2):459. doi: 10.1007/s11892-013-0459-8 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dikmenoglu N, Ciftci B, Ileri E, Guven SF, Seringec N, Aksoy Y et al (2006) Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med 7(3):255–261. doi: 10.1016/j.sleep.2005.12.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Jordan W, Cohrs S, Degner D, Meier A, Rodenbeck A, Mayer G et al (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm (Vienna) 113(2):239–254. doi: 10.1007/s00702-005-0316-2 CrossRefGoogle Scholar
  29. 29.
    Selmi C, Montano N, Furlan R, Keen CL, Gershwin ME (2007) Inflammation and oxidative stress in obstructive sleep apnea syndrome. Exp Biol Med (Maywood) 232(11):1409–1413. doi: 10.3181/0704-mr-103 CrossRefGoogle Scholar
  30. 30.
    Ozkan Y, Firat H, Simsek B, Torun M, Yardim-Akaydin S (2008) Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea-hypopnea syndrome (OSAHS). Sleep Breath 12(2):149–154. doi: 10.1007/s11325-007-0148-4 CrossRefPubMedGoogle Scholar
  31. 31.
    Qanungo S, Mukherjea M (2000) Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol Cell Biochem 215(1–2):11–19CrossRefPubMedGoogle Scholar
  32. 32.
    Fialova L, Malbohan I, Kalousova M, Soukupova J, Krofta L, Stipek S et al (2006) Oxidative stress and inflammation in pregnancy. Scand J Clin Lab Invest 66(2):121–127. doi: 10.1080/00365510500375230 CrossRefPubMedGoogle Scholar
  33. 33.
    Huang QT, Zhong M, Tian JW, Hou FF (2013) Higher plasma AOPP is associated with increased proteinuria excretion and decreased glomerular filtration rate in pre-eclamptic women. Pregnancy Hypertens 3(1):16–20. doi: 10.1016/j.preghy.2012.08.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Karacay O, Sepici-Dincel A, Karcaaltincaba D, Sahin D, Yalvac S, Akyol M et al (2010) A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24-36 weeks of gestation. Diabetes Res Clin Pract 89(3):231–238. doi: 10.1016/j.diabres.2010.04.015 CrossRefPubMedGoogle Scholar
  35. 35.
    de Ranitz-Greven WL, Bos DC, Poucki WK, Visser GH, Beulens JW, Biesma DH et al (2012) Advanced glycation end products, measured as skin autofluorescence, at diagnosis in gestational diabetes mellitus compared with normal pregnancy. Diabetes Technol Ther 14(1):43–49. doi: 10.1089/dia.2011.0105 CrossRefPubMedGoogle Scholar
  36. 36.
    de Ranitz-Greven WL, Kaasenbrood L, Poucki WK, Hamerling J, Bos DC, Visser GH et al (2012) Advanced glycation end products, measured as skin autofluorescence, during normal pregnancy and pregnancy complicated by diabetes mellitus. Diabetes Technol Ther 14(12):1134–1139. doi: 10.1089/dia.2012.0120 CrossRefPubMedGoogle Scholar
  37. 37.
    Pertynska-Marczewska M, Glowacka E, Sobczak M, Cypryk K, Wilczynski J (2009) Glycation endproducts, soluble receptor for advanced glycation endproducts and cytokines in diabetic and non-diabetic pregnancies. Am J Reprod Immunol 61(2):175–182. doi: 10.1111/j.1600-0897.2008.00679.x CrossRefPubMedGoogle Scholar
  38. 38.
    Oliver EA, Buhimschi CS, Dulay AT, Baumbusch MA, Abdel-Razeq SS, Lee SY et al (2011) Activation of the receptor for advanced glycation end products system in women with severe preeclampsia. J Clin Endocrinol Metab 96(3):689–698. doi: 10.1210/jc.2010-1418 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Toescu V, Nuttall SL, Martin U, Nightingale P, Kendall MJ, Brydon P et al (2004) Changes in plasma lipids and markers of oxidative stress in normal pregnancy and pregnancies complicated by diabetes. Clin Sci (Lond) 106(1):93–98. doi: 10.1042/cs20030175 CrossRefGoogle Scholar
  40. 40.
    Hung TH, Lo LM, Chiu TH, Li MJ, Yeh YL, Chen SF et al (2010) A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation. Reprod Sci 17(4):401–409. doi: 10.1177/1933719109359704 CrossRefPubMedGoogle Scholar
  41. 41.
    Garcia-Benavides L, Guzman-Sanchez A, Hernandez-Mora FJ, Muro-Gomez AM, Gomez-Martinez ML, Siller-Lopez FR (2012) PP078. Total antioxidant capacity in patients with pregnancy induced hypertension: its relation to maternal and/or perinatal complications. Pregnancy Hypertens. 2(3):282–283. doi: 10.1016/j.preghy.2012.04.189 CrossRefPubMedGoogle Scholar
  42. 42.
    Christou K, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4(3):225–228CrossRefPubMedGoogle Scholar
  43. 43.
    Barcelo A, Miralles C, Barbe F, Vila M, Pons S, Agusti AG (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J. 16(4):644–647CrossRefPubMedGoogle Scholar
  44. 44.
    Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165(7):934–939CrossRefPubMedGoogle Scholar
  45. 45.
    Tan KC, Chow WS, Lam JC, Lam B, Bucala R, Betteridge J et al (2006) Advanced glycation endproducts in nondiabetic patients with obstructive sleep apnea. Sleep 29(3):329–333CrossRefPubMedGoogle Scholar
  46. 46.
    Lam JC, Tan KC, Lai AY, Lam DC, Ip MS (2012) Increased serum levels of advanced glycation end-products is associated with severity of sleep disordered breathing but not insulin sensitivity in non-diabetic men with obstructive sleep apnoea. Sleep Med 13(1):15–20. doi: 10.1016/j.sleep.2011.07.015 CrossRefPubMedGoogle Scholar
  47. 47.
    Serebrovskaya TV, Swanson RJ, Kolesnikova EE (2003) Intermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment. J Physiol Pharmacol 54(Suppl 1):35–41PubMedGoogle Scholar
  48. 48.
    Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H et al (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108(1):79–85. doi: 10.1161/01.cir.0000078635.89229.8a CrossRefPubMedGoogle Scholar
  49. 49.
    Paz Y, Mar HL, Hazen SL, Tracy RP, Strohl KP, Auckley D, Bena J et al (2016) Effect of continuous positive airway pressure on cardiovascular biomarkers: the sleep apnea stress randomized controlled trial. Chest 150(1):80–90. doi: 10.1016/j.chest.2016.03.002 CrossRefGoogle Scholar
  50. 50.
    Duthie GG, Morrice PC, Ventresca PG, McLay JS Effects of storage, iron and time of day on indices of lipid peroxidation in plasma from healthy volunteers. Clin Chim Acta n206(3):207–213Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nazia Khan
    • 1
    • 2
    • 3
  • Geralyn Lambert-Messerlian
    • 3
    • 4
  • Joao Filipe Monteiro
    • 1
  • Julius Hodosy
    • 5
    • 6
  • Ľubomíra Tóthová
    • 5
    • 6
  • Peter Celec
    • 5
    • 6
  • Elizabeth Eklund
    • 4
  • Patrizia Curran
    • 7
  • Ghada Bourjeily
    • 1
    • 3
    • 7
    • 8
    Email author
  1. 1.Department of MedicineRhode Island HospitalProvidenceUSA
  2. 2.Department of Internal MedicineThe Miriam HospitalProvidenceUSA
  3. 3.The Warren Alpert Medical School of Brown UniversityProvidenceUSA
  4. 4.Department of Pathology and Laboratory MedicineWomen and Infants Hospital of RIProvidenceUSA
  5. 5.Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
  6. 6.Institute of Clinical and Translational Medicine, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia
  7. 7.Women’s Medicine CollaborativeThe Miriam HospitalProvidenceUSA
  8. 8.Divisions of Pulmonary, Critical Care and Sleep Medicine and Obstetric MedicineRhode Island HospitalProvidenceUSA

Personalised recommendations