Sleep and Breathing

, Volume 20, Issue 2, pp 467–482 | Cite as

Pathophysiology of central sleep apneas

Sleep Breathing Physiology and Disorders • Review

Abstract

The transition from wake to sleep is accompanied by a host of physiologic changes, which result in major alterations in respiratory control and may result in sleep-related breathing disorders. The central sleep apneas are a group of sleep-related breathing disorders that are characterized by recurrent episodes of airflow reduction or cessation due to a temporary reduction or absence of central respiratory drive. The fundamental hallmark of central sleep apnea (CSA) disorders is the presence of ventilatory control instability; however, additional mechanisms play a role in one or more specific manifestations of CSA. CSA may manifest during conditions of eucapnia/hypocapnia or chronic hypercapnia, which is a useful clinical classification that lends understanding to the underlying pathophysiology and potential therapies. In this review, an overview of normal breathing physiology is provided, followed by a discussion of pathophysiologic mechanisms that promote CSA and the mechanisms that are specific to different manifestations of CSA.

Keywords

Central sleep apnea Pathophysiology Mechanisms Cheyne-Stokes breathing 

References

  1. 1.
    Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. The Lancet Respiratory Medicine 3(4):310–318. doi:10.1016/S2213-2600(15)00043-0 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Eckert DJ, Jordan AS, Merchia P, Malhotra A (2007) Central sleep apnea: Pathophysiology and treatment. Chest 131 (2):595–607. doi:131/2/595/chest.06.2287Google Scholar
  3. 3.
    Hoffman M, Schulman DA (2012) The appearance of central sleep apnea after treatment of obstructive sleep apnea. Chest 142(2):517–522. doi:10.1378/chest.11-2562 PubMedCrossRefGoogle Scholar
  4. 4.
    Javaheri S, Dempsey JA (2013) Central sleep apnea. ComprPhysiol 3(1):141–163. doi:10.1002/cphy.c110057 Google Scholar
  5. 5.
    Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, Levy P, Simonds AK, Somers VK, Zannad F, Teschler H (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. The New England Journal of Medicine. doi:10.1056/NEJMoa1506459 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Remmers J (1999) Central neural control of breathing. In: Altose MD, Kawakami Y (eds) Control of breathing in health and disease, vol 135. Marcel Dekker, New York, pp. 1–40Google Scholar
  7. 7.
    Phillipson EA (1978) Control of breathing during sleep. Am Rev Respir Dis 118(5):909–939PubMedGoogle Scholar
  8. 8.
    Daly M, Ungar A (1966) Comparison of the reflex responses elicited by stimulation of the separately perfused carotid and aortic body chemoreceptors in the dog. J Physiol 182(2):379–403PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Honda Y, T H (1999) Chemical control of breathing. In: Altose MD, Kawakami Y (eds) Control of breathing in health and disease, vol 135. Marcel Dekker, New York, pp. 41–88Google Scholar
  10. 10.
    Burton MD, Kazemi H (2000) Neurotransmitters in central respiratory control. RespirPhysiol 122 (2–3):111–121. doi:S0034568700001535Google Scholar
  11. 11.
    Biscoe TJ, Purves MJ, Sampson SR (1970) The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol 208(1):121–131PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Weil JV (2003) Variation in human ventilatory control-genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135 (2–3):239–246. doi:S156990480300048XGoogle Scholar
  13. 13.
    Collins DD, Scoggin CH, Zwillich CW, Weil JV (1978) Hereditary aspects of decreased hypoxic response. J Clin Invest 62(1):105–110. doi:10.1172/JCI109093 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kawakami Y, Yamamoto H, Yoshikawa T, Shida A (1984) Chemical and behavioral control of breathing in adult twins. Am Rev Respir Dis 129(5):703–707PubMedCrossRefGoogle Scholar
  15. 15.
    Ladenson PW, Goldenheim PD, Ridgway EC (1988) Prediction and reversal of blunted ventilatory responsiveness in patients with hypothyroidism. Am J Med 84(5):877–883PubMedCrossRefGoogle Scholar
  16. 16.
    Kikuchi Y, Okabe S, Tamura G, Hida W, Homma M, Shirato K, Takishima T (1994) Chemosensitivity and perception of dyspnea in patients with a history of near-fatal asthma. N Engl J Med 330(19):1329–1334. doi:10.1056/NEJM199405123301901 PubMedCrossRefGoogle Scholar
  17. 17.
    Leon-Velarde F, Richalet JP (2006) Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol 7(2):125–137. doi:10.1089/ham.2006.7.125 PubMedCrossRefGoogle Scholar
  18. 18.
    Kronenberg RS, Drage CW (1973) Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Invest 52(8):1812–1819. doi:10.1172/JCI107363 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Scoggin CH, Doekel RD, Kryger MH, Zwillich CW, Weil JV (1978) Familial aspects of decreased hypoxic drive in endurance athletes. J Appl Physiol 44(3):464–468PubMedGoogle Scholar
  20. 20.
    Honda Y, Watanabe S, Hashizume I, Satomura Y, Hata N, Sakakibara Y, Severinghaus JW (1979) Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J Appl Physiol 46(4):632–638PubMedGoogle Scholar
  21. 21.
    Khoo MC (1999) Periodic breathing and central apnea. In: Altose MD, Kawakami Y (eds) Control of breathing in health and disease, vol 135. Marcel Dekker, New York, pp. 203–250Google Scholar
  22. 22.
    Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75(1):5–14PubMedGoogle Scholar
  23. 23.
    Pappenheimer JR, Fencl V, Heisey SR, Held D (1965) Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol 208:436–450PubMedGoogle Scholar
  24. 24.
    Beral V, Read DJ (1971) Insensitivity of respiratory centre to carbon dioxide in the Enga people of New Guinea. Lancet 2(7737):1290–1294PubMedCrossRefGoogle Scholar
  25. 25.
    Dempsey JA, Smith CA, Blain GM, Xie A, Gong Y, Teodorescu M (2012) Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv Exp Med Biol 758:343–349. doi:10.1007/978-94-007-4584-1_46 PubMedCrossRefGoogle Scholar
  26. 26.
    Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG (2006) Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol 572(Pt 2):503–523. doi:10.1113/jphysiol.2005.103788
  27. 27.
    Blain GM, Smith CA, Henderson KS, Dempsey JA (2010) Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 588(Pt 13):2455–2471. doi:10.1113/jphysiol.2010.187211
  28. 28.
    Taylor BJ, Woods PR, Wehrwein EA (2010) Modulation of the central chemoreflex magnitude by the peripheral chemoreceptors: a hyperadditive effect or are we barking up the wrong tree? J Physiol 588(Pt 24):4857–4858. doi:10.111388/24/4857/jphysiol.2010.200246
  29. 29.
    Cui Z, Fisher JA, Duffin J (2012) Central-peripheral respiratory chemoreflex interaction in humans. Respir Physiol Neurobiol 180(1):126–131. doi:10.1016/j.resp.2011.11.002 PubMedCrossRefGoogle Scholar
  30. 30.
    Duffin J, Mateika JH (2013) Cross-Talk opposing view: peripheral and central chemoreflexes have additive effects on ventilation in humans. J Physiol 591(Pt 18):4351–4353. doi:10.1113/jphysiol.2013.256800 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wilson RJ, Day TA (2013) CrossTalk opposing view: peripheral and central chemoreceptors have hypoadditive effects on respiratory motor output. J Physiol 591(Pt 18):4355–4357. doi:10.1113/jphysiol.2013.256578 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Teppema LJ, Smith CA (2013) CrossTalk opposing view: peripheral and central chemoreceptors have hyperadditive effects on respiratory motor control. J Physiol 591(Pt 18):4359–4361. doi:10.1113/jphysiol.2013.256818 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    White DP (2005) Pathogenesis of obstructive and central sleep apnea. AmJRespirCrit Care Med 172(11):1363–1370. doi:10.1164/rccm.200412-1631SO CrossRefGoogle Scholar
  34. 34.
    Moosavi S, Paydarfar D, Shea S (2005) Suprapontine control of breathing. In: Ward D (ed) Pharmacology and pathophysiology of the control of breathing, vol 202. Taylor & Francis, Boca Raton, FL, pp. 71–102Google Scholar
  35. 35.
    Orem J (1990) The nature of the wakefulness stimulus for breathing. ProgClinBiolRes 345:23–30Google Scholar
  36. 36.
    Fink BR (1961) Influence of cerebral activity in wakefulness on regulation of breathing. J Appl Physiol 16:15–20PubMedGoogle Scholar
  37. 37.
    Skatrud JB, Dempsey JA (1983) Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J Appl Physiol 55(3):813–822PubMedGoogle Scholar
  38. 38.
    Datta AK, Shea SA, Horner RL, Guz A (1991) The influence of induced hypocapnia and sleep on the endogenous respiratory rhythm in humans. J Physiol 440:17–33PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mador MJ, Tobin MJ (1991) Effect of alterations in mental activity on the breathing pattern in healthy subjects. Am Rev Respir Dis 144(3 Pt 1):481–487. doi:10.1164/ajrccm/144.3_Pt_1.481 PubMedCrossRefGoogle Scholar
  40. 40.
    Zuckerman M, Persky H, Curtis GC (1968) Relationships among anxiety, depression, hostility and autonomic variables. J Nerv Ment Dis 146(6):481–487PubMedCrossRefGoogle Scholar
  41. 41.
    Sasse SA, Berry RB, Nguyen TK, Light RW, Mahutte CK (1996) Arterial blood gas changes during breath-holding from functional residual capacity. Chest 110(4):958–964PubMedCrossRefGoogle Scholar
  42. 42.
    Trinder J, Whitworth F, Kay A, Wilkin P (1992) Respiratory instability during sleep onset. J Appl Physiol 73(6):2462–2469PubMedGoogle Scholar
  43. 43.
    Skatrud JB, Dempsey JA, Badr S, Begle RL (1988) Effect of airway impedance on CO2 retention and respiratory muscle activity during NREM sleep. J Appl Physiol 65(4):1676–1685PubMedGoogle Scholar
  44. 44.
    Dempsey JA (2005) Crossing the apnoeic threshold: causes and consequences. Exp Physiol 90(1):13–24. doi:10.1113/expphysiol.2004.02898585
  45. 45.
    Nishino T (2005) Airway reflexes in humans. In: Ward D (ed) Pharmacology and pathophysiology of the control of breathing, vol 202. Taylor & Francis, Boca Raton, FL, pp. 225–260Google Scholar
  46. 46.
    Schwartz AR, Patil SP, Squier S, Schneider H, Kirkness JP, Smith PL (2010) Obesity and upper airway control during sleep. J Appl Physiol 108(2):430–435. doi:10.1152/japplphysiol.00919.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fogel RB, Trinder J, White DP, Malhotra A, Raneri J, Schory K, Kleverlaan D, Pierce RJ (2005) The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls. JPhysiol 564(Pt 2):549–562. doi:10.1113/jphysiol.2005.083659 CrossRefGoogle Scholar
  48. 48.
    Harms CA, Zeng YJ, Smith CA, Vidruk EH, Dempsey JA (1996) Negative pressure-induced deformation of the upper airway causes central apnea in awake and sleeping dogs. J Appl Physiol 80(5):1528–1539PubMedGoogle Scholar
  49. 49.
    Javaheri S (2010) Central sleep apnea. ClinChest Med 31(2):235–248. doi:10.1016/j.ccm.2010.02.013 Google Scholar
  50. 50.
    Pack AI (2011) Central sleep apnea. HandbClinNeurol 98:411–419. doi:B978-0-444-52006-7.00027-7Google Scholar
  51. 51.
    Khan A, Qurashi M, Kwiatkowski K, Cates D, Rigatto H (2005) Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. JApplPhysiol 98(4):1171–1176. doi:10.1152/japplphysiol.00574.2003 Google Scholar
  52. 52.
    Orem J (1994) Central respiratory activity in rapid eye movement sleep: augmenting and late inspiratory cells [corrected]. Sleep 17(8):665–673PubMedGoogle Scholar
  53. 53.
    Khoo MC, Gottschalk A, Pack AI (1991) Sleep-induced periodic breathing and apnea: a theoretical study. J Appl Physiol 70(5):2014–2024PubMedGoogle Scholar
  54. 54.
    Naughton MT (2010) Loop gain in apnea: gaining control or controlling the gain? Am J Respir Crit Care Med 181(2):103–105. doi:10.1164/rccm.200909-1449ED PubMedCrossRefGoogle Scholar
  55. 55.
    Edwards BA, Sands SA, Berger PJ (2013) Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol 185(1):144–155. doi:10.1016/j.resp.2012.06.003 PubMedCrossRefGoogle Scholar
  56. 56.
    Khoo MC, Kronauer RE, Strohl KP, Slutsky AS (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53(3):644–659PubMedGoogle Scholar
  57. 57.
    Edwards BA, Sands SA, Skuza EM, Stockx EM, Brodecky V, Wilkinson MH, Berger PJ (2008) Increased peripheral chemosensitivity via dopaminergic manipulation promotes respiratory instability in lambs. Respir Physiol Neurobiol 164(3):419–428. doi:10.1016/j.resp.2008.09.003 PubMedCrossRefGoogle Scholar
  58. 58.
    Gleeson K, Zwillich CW (1992) Adenosine infusion and periodic breathing during sleep. J Appl Physiol 72(3):1004–1009PubMedGoogle Scholar
  59. 59.
    Lahiri S, Hsiao C, Zhang R, Mokashi A, Nishino T (1985) Peripheral chemoreceptors in respiratory oscillations. J Appl Physiol 58(6):1901–1908PubMedGoogle Scholar
  60. 60.
    Xie A, Rutherford R, Rankin F, Wong B, Bradley TD (1995) Hypocapnia and increased ventilatory responsiveness in patients with idiopathic central sleep apnea. Am J Respir Crit Care Med 152(6 Pt 1):1950–1955. doi:10.1164/ajrccm.152.6.8520761 PubMedCrossRefGoogle Scholar
  61. 61.
    Nemati S, Edwards BA, Sands SA, Berger PJ, Wellman A, Verghese GC, Malhotra A, Butler JP (2011) Model-based characterization of ventilatory stability using spontaneous breathing. J Appl Physiol 111(1):55–67. doi:10.1152/japplphysiol.01358.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    White DP, Gleeson K, Pickett CK, Rannels AM, Cymerman A, Weil JV (1987) Altitude acclimatization: influence on periodic breathing and chemoresponsiveness during sleep. J Appl Physiol 63(1):401–412PubMedGoogle Scholar
  63. 63.
    Plataki M, Sands SA, Malhotra A (2013) Clinical consequences of altered chemoreflex control. Respir Physiol Neurobiol. doi:10.1016/j.resp.2013.04.020 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Tepemma L, Dahan A (2005) Central chemoreceptors. In: Ward D (ed) Pharmacology and pathophysiology of the control of breathing, vol 202. Taylor & Francis, Boca Raton, FL, pp. 21–70Google Scholar
  65. 65.
    Smith CA, Saupe KW, Henderson KS, Dempsey JA (1995) Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J Appl Physiol 79(3):689–699PubMedGoogle Scholar
  66. 66.
    Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA (2003) Carotid body denervation eliminates apnea in response to transient hypocapnia. J Appl Physiol 94(1):155–164. doi:10.1152/japplphysiol.00722.2002 PubMedCrossRefGoogle Scholar
  67. 67.
    Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A 100(17):10073–10078. doi:10.1073/pnas.1734109100 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Peng YJ, Prabhakar NR (2004) Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol 96(3):1236–1242. doi:10.1152/japplphysiol.00820.2003 PubMedCrossRefGoogle Scholar
  69. 69.
    Syed Z, Lin HS, Mateika JH (2013) The impact of arousal state, sex, and sleep apnea on the magnitude of progressive augmentation and ventilatory long-term facilitation. J Appl Physiol 114(1):52–65. doi:10.1152/japplphysiol.00985.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Prabhakar NR (2013) Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. doi:10.1113/jphysiol.2012.247759 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, O’Driscoll DM, Hamilton GS, Naughton MT, Berger PJ (2011) Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 184(9):1067–1075. doi:10.1164/rccm.201103-0577OC PubMedCrossRefGoogle Scholar
  72. 72.
    Edwards BA, Sands SA, Feeney C, Skuza EM, Brodecky V, Wilkinson MH, Berger PJ (2009) Continuous positive airway pressure reduces loop gain and resolves periodic central apneas in the lamb. Respir Physiol Neurobiol 168(3):239–249. doi:10.1016/j.resp.2009.07.006 PubMedCrossRefGoogle Scholar
  73. 73.
    Manisty CH, Willson K, Wensel R, Whinnett ZI, Davies JE, Oldfield WL, Mayet J, Francis DP (2006) Development of respiratory control instability in heart failure: a novel approach to dissect the pathophysiological mechanisms. JPhysiol 577(Pt 1):387–401. doi:10.1113/jphysiol.2006.116764 CrossRefGoogle Scholar
  74. 74.
    Mateika JH, Sandhu KS (2011) Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol 176(1–2):1–11. doi:10.1016/j.resp.2011.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mateika JH, Syed Z (2013) Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir Physiol Neurobiol. doi:10.1016/j.resp.2013.04.010 Google Scholar
  76. 76.
    Yumino D, Bradley TD (2008) Central sleep apnea and Cheyne-Stokes respiration. Proc Am Thorac Soc 5(2):226–236. doi:10.1513/pats.200708-129MG PubMedCrossRefGoogle Scholar
  77. 77.
    Verbraecken JA, De Backer WA (2009) Upper airway mechanics. Respiration 78(2):121–133. doi:10.1159/000222508 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Guilleminault C, Hill MH, Simmons FB, Powell N, Riley R, Stoohs R (1997) Passive constriction of the upper airway during central apneas: fiberoptic and EMG investigations. Respir Physiol 108 (1):11–22. doi:S0034568797025292Google Scholar
  79. 79.
    Badr MS, Toiber F, Skatrud JB, Dempsey J (1995) Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol 78(5):1806–1815PubMedGoogle Scholar
  80. 80.
    Alex CG, Onal E, Lopata M (1986) Upper airway occlusion during sleep in patients with Cheyne-Stokes respiration. Am Rev Respir Dis 133(1):42–45PubMedCrossRefGoogle Scholar
  81. 81.
    Sankri-Tarbichi AG, Rowley JA, Badr MS (2009) Expiratory pharyngeal narrowing during central hypocapnic hypopnea. AmJRespirCrit Care Med 179(4):313–319. doi:10.1164/rccm.200805-741OC CrossRefGoogle Scholar
  82. 82.
    Eastwood PR, Curran AK, Smith CA, Dempsey JA (1998) Effect of upper airway negative pressure on inspiratory drive during sleep. J Appl Physiol 84(3):1063–1075PubMedGoogle Scholar
  83. 83.
    Younes M (2008) Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol 105(5):1389–1405. doi:10.1152/japplphysiol.90408.2008 PubMedCrossRefGoogle Scholar
  84. 84.
    Bradley TD, Brown IG, Zamel N, Phillipson EA, Hoffstein V (1987) Differences in pharyngeal properties between snorers with predominantly central sleep apnea and those without sleep apnea. Am Rev Respir Dis 135(2):387–391PubMedGoogle Scholar
  85. 85.
    Issa FG, Sullivan CE (1986) Reversal of central sleep apnea using nasal CPAP. Chest 90(2):165–171PubMedCrossRefGoogle Scholar
  86. 86.
    Oksenberg A, Arons E, Snir D, Radwan H, Soroker N (2002) Cheyne-Stokes respiration during sleep: a possible effect of body position. Med Sci Monit 8(7):CS61–CS65PubMedGoogle Scholar
  87. 87.
    Sahlin C, Svanborg E, Stenlund H, Franklin KA (2005) Cheyne-Stokes respiration and supine dependency. Eur Respir J 25(5):829–833. doi:10.1183/09031936.05.00107904 PubMedCrossRefGoogle Scholar
  88. 88.
    Hoffstein V, Slutsky AS (1987) Central sleep apnea reversed by continuous positive airway pressure. Am Rev Respir Dis 135(5):1210–1212PubMedGoogle Scholar
  89. 89.
    Takasaki Y, Orr D, Popkin J, Rutherford R, Liu P, Bradley TD (1989) Effect of nasal continuous positive airway pressure on sleep apnea in congestive heart failure. Am Rev Respir Dis 140(6):1578–1584. doi:10.1164/ajrccm/140.6.1578 PubMedCrossRefGoogle Scholar
  90. 90.
    Szollosi I, Roebuck T, Thompson B, Naughton MT (2006) Lateral sleeping position reduces severity of central sleep apnea/Cheyne-Stokes respiration. Sleep 29(8):1045–1051PubMedGoogle Scholar
  91. 91.
    Orr JE, Edwards BA, Malhotra A (2014) CrossTalk opposing view: loop gain is not a consequence of obstructive sleep apnoea. J Physiol 592(Pt 14):2903–2905. doi:10.1113/jphysiol.2014.271841 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Younes M (2014) CrossTalk proposal: elevated loop gain is a consequence of obstructive sleep apnoea. J Physiol 592(Pt 14):2899–2901. doi:10.1113/jphysiol.2014.271833 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dunai J, Kleiman J, Trinder J (1999) Ventilatory instability during sleep onset in individuals with high peripheral chemosensitivity. J Appl Physiol 87(2):661–672PubMedGoogle Scholar
  94. 94.
    Horner RL, Rivera MP, Kozar LF, Phillipson EA (2001) The ventilatory response to arousal from sleep is not fully explained by differences in CO(2) levels between sleep and wakefulness. J Physiol 534(Pt 3):881–890PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Trinder J, Padula M, Berlowitz D, Kleiman J, Breen S, Rochford P, Worsnop C, Thompson B, Pierce R (2001) Cardiac and respiratory activity at arousal from sleep under controlled ventilation conditions. J Appl Physiol 90(4):1455–1463PubMedGoogle Scholar
  96. 96.
    Xie A, Wong B, Phillipson EA, Slutsky AS, Bradley TD (1994) Interaction of hyperventilation and arousal in the pathogenesis of idiopathic central sleep apnea. Am J Respir Crit Care Med 150(2):489–495. doi:10.1164/ajrccm.150.2.8049835 PubMedCrossRefGoogle Scholar
  97. 97.
    Orem J, Kubin L (2000) Respiratory physiology: central neural control. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp. 205–228Google Scholar
  98. 98.
    Dunai J, Wilkinson M, Trinder J (1996) Interaction of chemical and state effects on ventilation during sleep onset. J Appl Physiol 81(5):2235–2243PubMedGoogle Scholar
  99. 99.
    Johnson PL, Edwards N, Burgess KR, Sullivan CE (2010) Sleep architecture changes during a trek from 1400 to 5000 m in the Nepal Himalaya. J Sleep Res 19(1 Pt 2):148–156. doi:10.1111/j.1365-2869.2009.00745.x PubMedCrossRefGoogle Scholar
  100. 100.
    Burgess KR, Johnson PL, Edwards N (2004) Central and obstructive sleep apnoea during ascent to high altitude. Respirology 9(2):222–229. doi:10.1111/j.1440-1843.2004.00576.x PubMedCrossRefGoogle Scholar
  101. 101.
    Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA (2002) Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep. Am J Respir Crit Care Med 165(9):1251–1260. doi:10.1164/rccm.2110041 PubMedCrossRefGoogle Scholar
  102. 102.
    Andrews G, Ainslie PN, Shepherd K, Dawson A, Swart M, Lucas S, Burgess KR (2012) The effect of partial acclimatization to high altitude on loop gain and central sleep apnoea severity. Respirology 17(5):835–840. doi:10.1111/j.1440-1843.2012.02170.x PubMedCrossRefGoogle Scholar
  103. 103.
    Bloch KE, Latshang TD, Turk AJ, Hess T, Hefti U, Merz TM, Bosch MM, Barthelmes D, Hefti JP, Maggiorini M, Schoch OD (2010) Nocturnal periodic breathing during acclimatization at very high altitude at Mount Muztagh Ata (7,546 m). Am J Respir Crit Care Med 182(4):562–568. doi:10.1164/rccm.200911-1694OC PubMedCrossRefGoogle Scholar
  104. 104.
    Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A 104(Suppl 1):8655–8660. doi:10.1073/pnas.0701985104 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Khoo MC, Anholm JD, Ko SW, Downey R, III, Powles AC, Sutton JR, Houston CS (1996) Dynamics of periodic breathing and arousal during sleep at extreme altitude. RespirPhysiol 103 (1):33–43. doi:0034568795000577Google Scholar
  106. 106.
    Burgess KR, Lucas SJ, Shepherd K, Dawson A, Swart M, Thomas KN, Lucas RA, Donnelly J, Peebles KC, Basnyat R, Ainslie PN (2013) Worsening of central sleep apnea at high altitude—a role for cerebrovascular function. J Appl Physiol 114(8):1021–1028. doi:10.1152/japplphysiol.01462.2012
  107. 107.
    Burgess KR, Lucas SJ, Shepherd K, Dawson A, Swart M, Thomas KN, Lucas RA, Donnelly J, Peebles KC, Basnyat R, Ainslie PN (2014) Influence of cerebral blood flow on central sleep apnea at high altitude. Sleep 37(10):1679–1687. doi:10.5665/sleep.4080 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Lovis A, De Riedmatten M, Greiner D, Lecciso G, Andries D, Scherrer U, Wellman A, Sartori C, Heinzer R (2012) Effect of added dead space on sleep disordered breathing at high altitude. Sleep Med 13(6):663–667. doi:10.1016/j.sleep.2012.02.012 PubMedCrossRefGoogle Scholar
  109. 109.
    Patz DS, Patz MD, Hackett PH (2013) Dead space mask eliminates central apnea at altitude. High Alt Med Biol 14(2):168–174. doi:10.1089/ham.2012.1111 PubMedCrossRefGoogle Scholar
  110. 110.
    Berssenbrugge A, Dempsey J, Iber C, Skatrud J, Wilson P (1983) Mechanisms of hypoxia-induced periodic breathing during sleep in humans. J Physiol 343:507–524PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    MacDonald M, Fang J, Pittman SD, White DP, Malhotra A (2008) The current prevalence of sleep disordered breathing in congestive heart failure patients treated with beta-blockers. J Clin Sleep Med 4(1):38–42PubMedPubMedCentralGoogle Scholar
  112. 112.
    Sin DD, Fitzgerald F, Parker JD, Newton G, Floras JS, Bradley TD (1999) Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med 160(4):1101–1106. doi:10.1164/ajrccm.160.4.9903020 PubMedCrossRefGoogle Scholar
  113. 113.
    Padeletti M, Green P, Mooney AM, Basner RC, Mancini DM (2009) Sleep disordered breathing in patients with acutely decompensated heart failure. Sleep Med 10(3):353–360. doi:10.1016/j.sleep.2008.03.010 PubMedCrossRefGoogle Scholar
  114. 114.
    Xie A, Skatrud JB, Puleo DS, Rahko PS, Dempsey JA (2002) Apnea-hypopnea threshold for CO2 in patients with congestive heart failure. Am J Respir Crit Care Med 165(9):1245–1250. doi:10.1164/rccm.200110-022OC PubMedCrossRefGoogle Scholar
  115. 115.
    Javaheri S (1999) A mechanism of central sleep apnea in patients with heart failure. N Engl J Med 341(13):949–954. doi:10.1056/NEJM199909233411304 PubMedCrossRefGoogle Scholar
  116. 116.
    Trinder J, Merson R, Rosenberg JI, Fitzgerald F, Kleiman J, Douglas Bradley T (2000) Pathophysiological interactions of ventilation, arousals, and blood pressure oscillations during Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 162(3 Pt 1):808–813. doi:10.1164/ajrccm.162.3.9806080 PubMedCrossRefGoogle Scholar
  117. 117.
    Topor ZL, Johannson L, Kasprzyk J, Remmers JE (2001) Dynamic ventilatory response to CO(2) in congestive heart failure patients with and without central sleep apnea. J Appl Physiol 91(1):408–416PubMedGoogle Scholar
  118. 118.
    Pinna GD, Robbi E, Pizza F, Caporotondi A, La Rovere MT, Maestri R (2014) Sleep-wake fluctuations and respiratory events during Cheyne-Stokes respiration in patients with heart failure. J Sleep Res 23(3):347–357. doi:10.1111/jsr.12109 PubMedGoogle Scholar
  119. 119.
    Xie A, Skatrud JB, Khayat R, Dempsey JA, Morgan B, Russell D (2005) Cerebrovascular response to carbon dioxide in patients with congestive heart failure. Am J Respir Crit Care Med 172(3):371–378. doi:10.1164/rccm.200406-807OC PubMedCrossRefGoogle Scholar
  120. 120.
    Solin P, Roebuck T, Johns DP, Walters EH, Naughton MT (2000) Peripheral and central ventilatory responses in central sleep apnea with and without congestive heart failure. Am J Respir Crit Care Med 162(6):2194–2200. doi:10.1164/ajrccm.162.6.2002024 PubMedCrossRefGoogle Scholar
  121. 121.
    Chenuel BJ, Smith CA, Skatrud JB, Henderson KS, Dempsey JA (2006) Increased propensity for apnea in response to acute elevations in left atrial pressure during sleep in the dog. J Appl Physiol 101(1):76–83. doi:10.1152/japplphysiol.01617.2005 PubMedCrossRefGoogle Scholar
  122. 122.
    Javaheri S, Corbett WS (1998) Association of low PaCO2 with central sleep apnea and ventricular arrhythmias in ambulatory patients with stable heart failure. Ann Intern Med 128(3):204–207PubMedCrossRefGoogle Scholar
  123. 123.
    Naughton M, Benard D, Tam A, Rutherford R, Bradley TD (1993) Role of hyperventilation in the pathogenesis of central sleep apneas in patients with congestive heart failure. Am Rev Respir Dis 148(2):330–338. doi:10.1164/ajrccm/148.2.330 PubMedCrossRefGoogle Scholar
  124. 124.
    Hanly P, Zuberi N, Gray R (1993) Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure. Relationship to arterial PCO2. Chest 104(4):1079–1084PubMedCrossRefGoogle Scholar
  125. 125.
    Tkacova R, Hall MJ, Liu PP, Fitzgerald FS, Bradley TD (1997) Left ventricular volume in patients with heart failure and Cheyne-Stokes respiration during sleep. Am J Respir Crit Care Med 156(5):1549–1555. doi:10.1164/ajrccm.156.5.9612101 PubMedCrossRefGoogle Scholar
  126. 126.
    Lorenzi-Filho G, Azevedo ER, Parker JD, Bradley TD (2002) Relationship of carbon dioxide tension in arterial blood to pulmonary wedge pressure in heart failure. Eur Respir J 19(1):37–40PubMedCrossRefGoogle Scholar
  127. 127.
    Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT (1999) Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99(12):1574–1579PubMedCrossRefGoogle Scholar
  128. 128.
    Yu J, Zhang JF, Fletcher EC (1998) Stimulation of breathing by activation of pulmonary peripheral afferents in rabbits. J Appl Physiol 85(4):1485–1492PubMedGoogle Scholar
  129. 129.
    Calvin AD, Somers VK, Johnson BD, Scott CG, Olson LJ (2014) Left atrial size, chemosensitivity, and central sleep apnea in heart failure. Chest 146(1):96–103. doi:10.1378/chest.13-0309 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cundrle Jr I, Somers VK, Johnson BD, Scott CG, Olson LJ (2015) Exercise end-tidal carbon dioxide predicts central sleep apnea in heart failure patients. Chest. doi:10.1378/chest.14-2114 Google Scholar
  131. 131.
    Solin P, Roebuck T, Swieca J, Walters EH, Naughton MT (1998) Effects of cardiac dysfunction on non-hypercapnic central sleep apnea. Chest 113(1):104–110PubMedCrossRefGoogle Scholar
  132. 132.
    Lyons OD, Chan CT, Yadollahi A, Bradley TD (2015) Effect of ultrafiltration on sleep apnea and sleep structure in patients with end stage renal disease. American Journal of Respiratory and Critical Care Medicine. doi:10.1164/rccm.201412-2288OC Google Scholar
  133. 133.
    Hall MJ, Xie A, Rutherford R, Ando S, Floras JS, Bradley TD (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154(2 Pt 1):376–381. doi:10.1164/ajrccm.154.2.8756809 PubMedCrossRefGoogle Scholar
  134. 134.
    Nopmaneejumruslers C, Kaneko Y, Hajek V, Zivanovic V, Bradley TD (2005) Cheyne-Stokes respiration in stroke: relationship to hypocapnia and occult cardiac dysfunction. Am J Respir Crit Care Med 171(9):1048–1052. doi:10.1164/rccm.200411-1591OC PubMedCrossRefGoogle Scholar
  135. 135.
    Lorenzi-Filho G, Rankin F, Bies I, Douglas Bradley T (1999) Effects of inhaled carbon dioxide and oxygen on Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 159(5 Pt 1):1490–1498. doi:10.1164/ajrccm.159.5.9810040 PubMedCrossRefGoogle Scholar
  136. 136.
    Szollosi I, Thompson BR, Krum H, Kaye DM, Naughton MT (2008) Impaired pulmonary diffusing capacity and hypoxia in heart failure correlates with central sleep apnea severity. Chest 134(1):67–72. doi:10.1378/chest.07-1487 PubMedCrossRefGoogle Scholar
  137. 137.
    Sullivan CE, Murphy E, Kozar LF, Phillipson EA (1978) Waking and ventilatory responses to laryngeal stimulation in sleeping dogs. J Appl Physiol Respir Environ Exerc Physiol 45(5):681–689PubMedGoogle Scholar
  138. 138.
    Bucca CB, Brussino L, Battisti A, Mutani R, Rolla G, Mangiardi L, Cicolin A (2007) Diuretics in obstructive sleep apnea with diastolic heart failure. Chest 132(2):440–446. doi:10.1378/chest.07-0311 PubMedCrossRefGoogle Scholar
  139. 139.
    Kasai T, Motwani SS, Yumino D, Gabriel JM, Montemurro LT, Amirthalingam V, Floras JS, Bradley TD (2013) Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea. J Am Coll Cardiol 61(11):1157–1166. doi:10.1016/j.jacc.2012.10.055 PubMedCrossRefGoogle Scholar
  140. 140.
    Yumino D, Redolfi S, Ruttanaumpawan P, Su MC, Smith S, Newton GE, Mak S, Bradley TD (2010) Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation 121(14):1598–1605. doi:10.1161/CIRCULATIONAHA.109.902452 PubMedCrossRefGoogle Scholar
  141. 141.
    Orem J (1980) Neuronal mechanisms of respiration in REM sleep. Sleep 3(3–4):251–267PubMedGoogle Scholar
  142. 142.
    Brack T, Thuer I, Clarenbach CF, Senn O, Noll G, Russi EW, Bloch KE (2007) Daytime Cheyne-Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality. Chest 132(5):1463–1471. doi:10.1378/chest.07-0121 PubMedCrossRefGoogle Scholar
  143. 143.
    Arzt M, Harth M, Luchner A, Muders F, Holmer SR, Blumberg FC, Riegger GA, Pfeifer M (2003) Enhanced ventilatory response to exercise in patients with chronic heart failure and central sleep apnea. Circulation 107(15):1998–2003. doi:10.1161/01.CIR.0000065227.04025.C2 PubMedCrossRefGoogle Scholar
  144. 144.
    Javaheri S, Sands SA, Edwards BA (2014) Acetazolamide attenuates Hunter-Cheyne-Stokes breathing but augments the hypercapnic ventilatory response in patients with heart failure. Ann Am Thorac Soc 11(1):80–86. doi:10.1513/AnnalsATS.201306-201OC PubMedCrossRefGoogle Scholar
  145. 145.
    Naughton MT (2012) Cheyne-Stokes respiration: friend or foe? Thorax 67(4):357–360. doi:10.1136/thoraxjnl-2011-200927 PubMedCrossRefGoogle Scholar
  146. 146.
    Solin P, Jackson DM, Roebuck T, Naughton MT (2002) Cardiac diastolic function and hypercapnic ventilatory responses in central sleep apnoea. Eur Respir J 20(3):717–723PubMedCrossRefGoogle Scholar
  147. 147.
    Leung RS, Huber MA, Rogge T, Maimon N, Chiu KL, Bradley TD (2005) Association between atrial fibrillation and central sleep apnea. Sleep 28(12):1543–1546PubMedGoogle Scholar
  148. 148.
    Xie A, Rankin F, Rutherford R, Bradley TD (1997) Effects of inhaled CO2 and added dead space on idiopathic central sleep apnea. J Appl Physiol 82(3):918–926PubMedGoogle Scholar
  149. 149.
    White DP, Zwillich CW, Pickett CK, Douglas NJ, Findley LJ, Weil JV (1982) Central sleep apnea. Improvement with acetazolamide therapy. Arch Intern Med 142(10):1816–1819PubMedCrossRefGoogle Scholar
  150. 150.
    DeBacker WA, Verbraecken J, Willemen M, Wittesaele W, DeCock W, Van deHeyning P (1995) Central apnea index decreases after prolonged treatment with acetazolamide. Am J Respir Crit Care Med 151(1):87–91. doi:10.1164/ajrccm.151.1.7812578 PubMedCrossRefGoogle Scholar
  151. 151.
    Morgenthaler TI, Kagramanov V, Hanak V, Decker PA (2006) Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep 29(9):1203–1209PubMedGoogle Scholar
  152. 152.
    Malhotra A, Bertisch S, Wellman A (2008) Complex sleep apnea: it isn’t really a disease. J Clin Sleep Med 4(5):406–408PubMedPubMedCentralGoogle Scholar
  153. 153.
    Gay PC (2008) Complex sleep apnea: it really is a disease. J Clin Sleep Med 4(5):403–405PubMedPubMedCentralGoogle Scholar
  154. 154.
    Javaheri S, Smith J, Chung E (2009) The prevalence and natural history of complex sleep apnea. J Clin Sleep Med 5(3):205–211PubMedPubMedCentralGoogle Scholar
  155. 155.
    Marrone O, Stallone A, Salvaggio A, Milone F, Bellia V, Bonsignore G (1991) Occurrence of breathing disorders during CPAP administration in obstructive sleep apnoea syndrome. Eur Respir J 4(6):660–666PubMedGoogle Scholar
  156. 156.
    Westhoff M, Arzt M, Litterst P (2012) Prevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failure. Sleep Breath 16(1):71–78. doi:10.1007/s11325-011-0486-0 PubMedCrossRefGoogle Scholar
  157. 157.
    Cassel W, Canisius S, Becker HF, Leistner S, Ploch T, Jerrentrup A, Vogelmeier C, Koehler U, Heitmann J (2011) A prospective polysomnographic study on the evolution of complex sleep apnoea. EurRespirJ 38(2):329–337. doi:10.1183/09031936.00162009 Google Scholar
  158. 158.
    Dernaika T, Tawk M, Nazir S, Younis W, Kinasewitz GT (2007) The significance and outcome of continuous positive airway pressure-related central sleep apnea during split-night sleep studies. Chest 132(1):81–87. doi:10.1378/chest.06-2562 PubMedCrossRefGoogle Scholar
  159. 159.
    Kuzniar TJ, Kasibowska-Kuzniar K, Ray DW, Freedom T (2013) Clinical heterogeneity of patients with complex sleep apnea syndrome. Sleep Breath. doi:10.1007/s11325-013-0825-4 PubMedPubMedCentralGoogle Scholar
  160. 160.
    Bazurto Zapata MA, Martinez-Guzman W, Vargas-Ramirez L, Herrera K, Gonzalez-Garcia M (2015) Prevalence of central sleep apnea during continous positive airway pressure (CPAP) titration in subjects with obstructive sleep apnea syndrome at an altitude of 2640 m. Sleep Med 16(3):343–346. doi:10.1016/j.sleep.2014.09.022 PubMedCrossRefGoogle Scholar
  161. 161.
    Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W (2001) Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med 163(5):1181–1190. doi:10.1164/ajrccm.163.5.2007013 PubMedCrossRefGoogle Scholar
  162. 162.
    Buckle P, Millar T, Kryger M (1992) The effect of short-term nasal CPAP on Cheyne-Stokes respiration in congestive heart failure. Chest 102(1):31–35PubMedCrossRefGoogle Scholar
  163. 163.
    Montesi SB, Bakker JP, Macdonald M, Hueser L, Pittman S, White DP, Malhotra A (2013) Air leak during CPAP titration as a risk factor for central apnea. J Clin Sleep Med 9(11):1187–1191. doi:10.5664/jcsm.3166 PubMedPubMedCentralGoogle Scholar
  164. 164.
    Thomas RJ, Terzano MG, Parrino L, Weiss JW (2004) Obstructive sleep-disordered breathing with a dominant cyclic alternating pattern—a recognizable polysomnographic variant with practical clinical implications. Sleep 27(2):229–234PubMedGoogle Scholar
  165. 165.
    De Paolis F, Colizzi E, Milioli G, Grassi A, Riccardi S, Parrino L, Terzano MG (2012) Acute shift of a case of moderate obstructive sleep apnea syndrome towards one of severe central sleep apnea syndrome after an ischemic stroke. Sleep Med 13(6):763–766. doi:10.1016/j.sleep.2012.01.012 PubMedCrossRefGoogle Scholar
  166. 166.
    Sacchetti ML, Di Mascio MT, Ottaviani S, Faedda TM, Fiorelli M, Toni D, Roukos R (2013) May stroke cause a Complex Sleep Apnea-CompSA? Sleep Med 14(2):223–224. doi:10.1016/j.sleep.2012.10.002 PubMedCrossRefGoogle Scholar
  167. 167.
    Fahim A, Johnson AO (2012) Chronic opioid use: a risk factor for central sleep apnoea and successful therapy with adaptive pressure support servo-ventilation. J R Coll Physicians Edinb 42(4):314–316. doi:10.4997/JRCPE.2012.407 PubMedCrossRefGoogle Scholar
  168. 168.
    Salloum A, Rowley JA, Mateika JH, Chowdhuri S, Omran Q, Badr MS (2010) Increased propensity for central apnea in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure. AmJRespirCrit Care Med 181(2):189–193. doi:10.1164/rccm.200810-1658OC CrossRefGoogle Scholar
  169. 169.
    Meza S, Mendez M, Ostrowski M, Younes M (1998) Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol 85(5):1929–1940PubMedGoogle Scholar
  170. 170.
    Thomas RJ, Daly RW, Weiss JW (2005) Low-concentration carbon dioxide is an effective adjunct to positive airway pressure in the treatment of refractory mixed central and obstructive sleep-disordered breathing. Sleep 28(1):69–77PubMedGoogle Scholar
  171. 171.
    Boden AG, Harris MC, Parkes MJ (1998) Apneic threshold for CO2 in the anesthetized rat: fundamental properties under steady-state conditions. J Appl Physiol 85(3):898–907PubMedGoogle Scholar
  172. 172.
    Fujiwaki T, Hasegawa H, Arai H, Hayasaka K, Ohta S (2012) Slowly progressive sleep apnea in late-onset central hypoventilation syndrome. Pediatr Int 54(2):290–292. doi:10.1111/j.1442-200X.2011.03431.x PubMedCrossRefGoogle Scholar
  173. 173.
    Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461. doi:10.1038/ng1130 PubMedCrossRefGoogle Scholar
  174. 174.
    Weese-Mayer DE, Silvestri JM, Menzies LJ, Morrow-Kenny AS, Hunt CE, Hauptman SA (1992) Congenital central hypoventilation syndrome: diagnosis, management, and long-term outcome in thirty-two children. J Pediatr 120(3):381–387PubMedCrossRefGoogle Scholar
  175. 175.
    ATS (1999) Idiopathic congenital central hypoventilation syndrome: diagnosis and management. American Thoracic Society. Am J Respir Crit Care Med 160(1):368–373. doi:10.1164/ajrccm.160.1.16010 CrossRefGoogle Scholar
  176. 176.
    Shook JE, Watkins WD, Camporesi EM (1990) Differential roles of opioid receptors in respiration, respiratory disease, and opiate-induced respiratory depression. Am Rev Respir Dis 142(4):895–909. doi:10.1164/ajrccm/142.4.895 PubMedCrossRefGoogle Scholar
  177. 177.
    Santiago TV, Edelman NH (1985) Opioids and breathing. J Appl Physiol 59(6):1675–1685PubMedGoogle Scholar
  178. 178.
    Luo X, Pietrobon R, Hey L (2004) Patterns and trends in opioid use among individuals with back pain in the United States. Spine (Phila Pa 1976) 29(8):884–890 discussion 891CrossRefGoogle Scholar
  179. 179.
    Farney RJ, Walker JM, Cloward TV, Rhondeau S (2003) Sleep-disordered breathing associated with long-term opioid therapy. Chest 123(2):632–639PubMedCrossRefGoogle Scholar
  180. 180.
    Wang D, Teichtahl H, Drummer O, Goodman C, Cherry G, Cunnington D, Kronborg I (2005) Central sleep apnea in stable methadone maintenance treatment patients. Chest 128(3):1348–1356. doi:10.1378/chest.128.3.1348 PubMedCrossRefGoogle Scholar
  181. 181.
    Weil JV, McCullough RE, Kline JS, Sodal IE (1975) Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med 292(21):1103–1106. doi:10.1056/NEJM197505222922106 PubMedCrossRefGoogle Scholar
  182. 182.
    Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7(3):232–242. doi:10.1038/nrn1871 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Hajiha M, DuBord MA, Liu H, Horner RL (2009) Opioid receptor mechanisms at the hypoglossal motor pool and effects on tongue muscle activity in vivo. J Physiol 587(Pt 11):2677–2692. doi:10.1113/jphysiol.2009.171678 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Davis MJ, Livingston M, Scharf SM (2012) Reversal of central sleep apnea following discontinuation of opioids. J Clin Sleep Med 8(5):579–580. doi:10.5664/jcsm.2164 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Pulmonary, Critical Care and Sleep Medicine, One Gustave Levy PlaceMount Sinai HospitalNew YorkUSA
  2. 2.Division of Pulmonary and Critical Care Medicine, Johns Hopkins Sleep Disorders CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations