Sleep and Breathing

, Volume 20, Issue 1, pp 25–31 | Cite as

Relationship between surfactant proteins B and C and obstructive sleep apnea: is serum SP-B concentration a potential biomarker of obstructive sleep apnea?

  • Liang Shao
  • Nanfang Li
  • Xiaoguang Yao
  • Mulalibieke Heizati
  • Arikin Abdireim
  • Yingchun Wang
  • Zufeiya Abulikemu
  • Delian Zhang
  • Guijuan Chang
  • Ling Zhou
  • Jing Hong
  • Yongping Zhang
  • Jianqiong Kong
  • Xiangyang Zhang
Original Article

Abstract

Background

Surfactant proteins B and C are mainly synthesized, secreted by alveolar type II cells, and affected by hypoxia and mechanical stretches. We hypothesized that their serum levels might be altered by intermittent hypoxia and swing of intrathoracic pressure of obstructive sleep apnea (OSA).

Methods

Consecutive 140 middle-aged males, suspicious of OSA determined by polysomnography, were studied. Surfactant proteins B and C were determined by ELISA.

Results

Surfactant protein B (41.39 ± 6.01 vs 44.73 ± 7.62 ng/L, p = 0.005), not C (32.60 ± 6.00 vs 32.43 ± 6.44 ng/L, p = 0.61), significantly lowered in moderate to severe OSA subjects than in non to mild OSA subjects. Severity of OSA is inversely correlated with serum surfactant protein B. Adjusting age, body mass index, and smoking history, compared to subjects with surfactant protein B (SP-B) ≥43.35 ng/L, those with SP-B <43.35 ng/L showed significantly increased 1.528-fold risk for moderate to severe OSA (p = 0.009), whereas no association between surfactant protein C and OSA was observed. Prevalence of moderate to severe OSA in lower SP-B group is higher than that in higher SP-B group (62.7 vs 38.4 %, p = 0.003). Serial and parallel tests on Epworth sleep scale (ESS) and SP-B evaluation can be complementary and prove helpful with high specificity (94.44 %) and sensitivity (84.48 %) to detect moderate to severe OSA.

Conclusions

Serum surfactant protein B, rather than C, is decreased in some individuals with moderate to severe OSA, compared to non to mild OSA subjects. Serum surfactant protein B might be a potential biomarker to diagnose OSA.

Keywords

Obstructive sleep apnea Surfactant protein Biomarker 

Abbreviations

OSA

Obstructive sleep apnea

ATII

Alveolar type II cells

PSG

Polysomnography

BMI

Body mass index

HbA1C

Hemoglobin A1C

FBG

Fasting blood glucose

SPs

Surfactant proteins

SP-B

Surfactant protein B

SP-C

Surfactant protein C

KL-6

Krebs von den Lungen-6

AHI

Apnea/hypopnea index

LSaO2

Lowest oxyhemoglobin saturation

ODI3

Oxygen desaturation index of 3 %

ODI4

Oxygen desaturation index of 4 %

BP

Blood pressure

ESS

Epworth sleep scale

PPV

Positive predictive value

NPV

Negative predictive value

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant number: 81260017)

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Young T, Palta M, Dempsey J et al (2001) The occurrence of sleep-disordered breathing among middle aged adults. N Engl J Med 328:1230–1235CrossRefGoogle Scholar
  2. 2.
    Sánchez-de-la-Torre M, Campos-Rodriguez F, Barbé F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1:61–72CrossRefPubMedGoogle Scholar
  3. 3.
    Young T, Evans L, Finn L et al (1997) Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20:705–706PubMedGoogle Scholar
  4. 4.
    Aihara K, Oga T, Chihara Y et al (2013) Analysis of systemic and airway inflammation in obstructive sleep apnea. Sleep Breath 17:597–604CrossRefPubMedGoogle Scholar
  5. 5.
    Sarıman N, Levent E, Cubuk R et al (2011) Bronchial hyperreactivity and airway wall thickening in obstructive sleep apnea patients. Sleep Breath 15:341–350CrossRefPubMedGoogle Scholar
  6. 6.
    Boyd JH, Petrof BJ, Hamid Q et al (2004) Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am J Respir Crit Care Med 170:541–546CrossRefPubMedGoogle Scholar
  7. 7.
    Timby J, Reed C, Zeilender S et al (1990) Mechanical causes of pulmonary edema. Chest 98:973–979CrossRefPubMedGoogle Scholar
  8. 8.
    Reinke C, Bevans-Fonti S, Grigoryev DN et al (2011) Chronic intermittent hypoxia induces lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol 300:266–273CrossRefGoogle Scholar
  9. 9.
    Lederer DJ, Jelic S, Basner RC et al (2009) Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. Eur Respir J 33:793–796CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62:825–846, Review CrossRefPubMedGoogle Scholar
  11. 11.
    Nkadi PO, Merritt TA, Pillers DA (2009) An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97:95–101CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gortner L, Hilgendorff A, Bähner T et al (2005) Hypoxia-induced intrauterine growth retardation: effects on pulmonary development and surfactant protein transcription. Biol Neonate 88:129–135CrossRefPubMedGoogle Scholar
  13. 13.
    Tong Q, Zheng L, Dodd-o J et al (2006) Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung. Am J Respir Cell Mol Biol 34:28–38CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liang S, Li N, Heizhati M, et al. (2015) What do changes in concentrations of serum surfactant proteins A and D in OSA mean? Sleep BreathGoogle Scholar
  15. 15.
    White CW, Greene KE, Allen CB et al (2001) Elevated expression of surfactant proteins in newborn rats during adaptation to hyperoxia. Am J Respir Cell Mol Biol 25:51–59CrossRefPubMedGoogle Scholar
  16. 16.
    Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269CrossRefPubMedGoogle Scholar
  17. 17.
    Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2007) Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 293:259–271CrossRefGoogle Scholar
  18. 18.
    Guo Y, Yang MC, Weissler JC et al (2007) PLAGL2 translocation and SP-C promoter activity—a cellular response of lung cells to hypoxia. Biochem Biophys Res Commun 360:659–665CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Braems GA, Yao LJ, Inchley K et al (2000) Ovine surfactant protein cDNAs: use in studies on fetal lung growth and maturation after prolonged hypoxemia. Am J Physiol Lung Cell Mol Physiol 278:754–764Google Scholar
  20. 20.
    Johnston LC, Gonzales LW, Lightfoot RT et al (2010) Opposing regulation of human alveolar type II cell differentiation by nitric oxide and hyperoxia. Pediatr Res 67:521–525CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tsao PN, Wei SC (2013) Prenatal hypoxia down regulates the expression of pulmonary vascular endothelial growth factor and its receptors in fetal mice. Neonatology 103:300–307CrossRefPubMedGoogle Scholar
  22. 22.
    Nardo L, Zhao L, Green L et al (2005) The effect of repeated umbilical cord occlusions on pulmonary surfactant protein mRNA levels in the ovine fetus. J Soc Gynecol Investig 12:510–517CrossRefPubMedGoogle Scholar
  23. 23.
    Whitsett JA, Wert SE, Trapnell BC (2004) Genetic disorders influencing lung formation and function at birth. Hum Mol Genet 13:207–215CrossRefGoogle Scholar
  24. 24.
    Lye M, Wang L, Li E et al (1991) Pulmonary surfactant will secure free airflow through a narrow tube. J Appl Physiol 71:742–748Google Scholar
  25. 25.
    Enhorning G, Holm BA (1993) Disruption of pulmonary surfactant’s ability to maintain openness of a narrow tube. J Appl Physiol 74:2922–2927PubMedGoogle Scholar
  26. 26.
    Bayat S, Porra L, Albu G et al (2013) Effect of positive end-expiratory pressure on regional ventilation distribution during mechanical ventilation after surfactant depletion. Anesthesiology 119:89–100CrossRefPubMedGoogle Scholar
  27. 27.
    Owens RL, Malhotra A, Eckert DJ et al (2010) The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol (1985) 108:445–451CrossRefGoogle Scholar
  28. 28.
    Lancaster LH, Mason WR, Parnell JA et al (2008) Obstructive sleep apnea is common in IPF [abstract]. Am J Respir Crit Care Med 177:A247Google Scholar
  29. 29.
    Sumita Y, Sugiura T, Kawaguchi Y et al (2010) Genetic polymorphisms in the surfactant proteins in systemic sclerosis in Japanese: T/T genotype at 1580 C/T (Thr131Ile) in the SP-B gene reduces the risk of interstitial lung disease. Pneumonol Alergol Pol 78:224–228Google Scholar
  30. 30.
    Lam JC, Kairaitis K, Verma M et al (2008) Saliva production and surface tension: influences on patency of the passive upper airway. J Physiol 586:5537–5547CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Liang Shao
    • 1
    • 2
  • Nanfang Li
    • 2
  • Xiaoguang Yao
    • 2
  • Mulalibieke Heizati
    • 2
  • Arikin Abdireim
    • 1
    • 2
  • Yingchun Wang
    • 2
  • Zufeiya Abulikemu
    • 2
  • Delian Zhang
    • 2
  • Guijuan Chang
    • 2
  • Ling Zhou
    • 2
  • Jing Hong
    • 2
  • Yongping Zhang
    • 1
    • 2
  • Jianqiong Kong
    • 2
  • Xiangyang Zhang
    • 1
  1. 1.Graduate School of Xinjiang Medical UniversityUrumqiChina
  2. 2.The Center of Hypertension of the People’s Hospital of Xinjiang Uygur Autonomous RegionThe Center of Diagnosis, Treatment and Research of Hypertension in XinjiangUrumqiChina

Personalised recommendations