Advertisement

Sleep and Breathing

, Volume 19, Issue 1, pp 247–253 | Cite as

Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose

  • Laszlo Kunos
  • Andras Bikov
  • Zsofia Lazar
  • Beata Zita Korosi
  • Palma Benedek
  • Gyorgy Losonczy
  • Ildiko Horvath
Original Article

Abstract

Purpose

Electronic noses represent a technique for the measurement of exhaled breath volatile compound pattern which can discriminate patients with obstructive sleep apnoea (OSA) from control subjects. Although overnight changes in circulating biomarkers were reported, this effect on the exhaled volatile compound pattern has not been studied before. We aimed to compare breath patterns in the evening and in the morning in patients with OSA and to study the ability of the electronic nose to distinguish patients from controls based on these exhaled volatile patterns.

Methods

Exhaled breath volatile compound pattern was measured before and after night in 26 patients with suspected sleep-disordered breathing (53 ± 15 years) who underwent polysomnography and in ten control subjects (37 ± 15 years), by whom sleep-disordered breathing was excluded with a home apnoea screening device. Breath measurements were also performed in the morning in 26 healthy, non-smoking age-matched controls (48 ± 10 years) with no complaints about disturbed sleep. Exhaled volatile compound pattern was processed with a Cyranose 320 electronic nose, and principal component analysis was used for statistical analysis.

Results

Exhaled volatile compound patterns recorded in the evening and in the morning were different in patients with OSA (p = 0.01) but not in non-OSA habitual snorers (p = 0.49) or in control subjects (p = 0.23). The electronic nose distinguished patients with OSA from control subjects based on the breath samples collected in the morning (p < 0.001, classification accuracy 77 %) but not in the evening (p > 0.05).

Conclusions

Evening and morning exhaled volatile compound patterns are different in OSA. This might affect the ability of electronic noses to identify this disorder. Overnight alterations in volatile substances need to be taken into account during exhaled breath measurements in OSA.

Keywords

Breath test Electronic nose OSA Sleep Volatile organic compounds 

Notes

Acknowledgments

The study was supported by a Hungarian Scientific Research Fund (OTKA 68808) and Hungarian Respiratory Society research grant (to Andras Bikov). The authors are grateful to Monika Banlaky for assistance in sample collection and to Anna Grove for English corrections.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ioachimescu OC, Collop NA (2012) Sleep-disordered breathing. Neurol Clin 30(4):1095–1136CrossRefPubMedGoogle Scholar
  2. 2.
    Eastwood PR, Malhotra A, Palmer LJ, Kezirian EJ, Horner RL, Ip MS, Thurnheer R, Antic NA, Hillman DR (2010) Obstructive sleep apnoea: from pathogenesis to treatment: current controversies and future directions. Respirology 15(4):587–595CrossRefPubMedGoogle Scholar
  3. 3.
    Li Y, Chongsuvivatwong V, Geater A, Liu A (2009) Exhaled breath condensate cytokine level as a diagnostic tool for obstructive sleep apnea syndrome. Sleep Med 10(1):95–103CrossRefPubMedGoogle Scholar
  4. 4.
    Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392CrossRefPubMedGoogle Scholar
  5. 5.
    Petrosyan M, Perraki E, Simoes D, Koutsourelakis I, Vagiakis E, Roussos C, Gratziou C (2008) Exhaled breath markers in patients with obstructive sleep apnoea. Sleep Breath 12(3):207–215CrossRefPubMedGoogle Scholar
  6. 6.
    Goldbart AD, Krishna J, Li RC, Serpero LD, Gozal D (2006) Inflammatory mediators in exhaled breath condensate of children with obstructive sleep apnea syndrome. Chest 130(1):143–148CrossRefPubMedGoogle Scholar
  7. 7.
    Verhulst SL, Aerts L, Jacobs S, Schrauwen N, Haentjens D, Claes R, Vaerenberg H, Van Gaal LF, De Backer WA, Desager KN (2008) Sleep-disordered breathing, obesity, and airway inflammation in children and adolescents. Chest 134(6):1169–1175CrossRefPubMedGoogle Scholar
  8. 8.
    Olopade CO, Christon JA, Zakkar M, Hua C, Swedler WI, Scheff PA, Rubinstein I (1997) Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 111(6):1500–1504CrossRefPubMedGoogle Scholar
  9. 9.
    Benedek P, Lazar Z, Bikov A, Kunos L, Katona G, Horvath I (2013) Exhaled biomarker pattern is altered in children with obstructive sleep apnoea syndrome. Int J Pediatr Otorhinolaryngol 77(8):1244–1247CrossRefPubMedGoogle Scholar
  10. 10.
    Greulich T, Hattesohl A, Grabisch A, Koepke J, Schmid S, Noeske S, Nell C, Wencker M, Jorres RA, Vogelmeier CF, Kohler U, Koczulla AR (2013) Detection of obstructive sleep apnoea by an electronic nose. Eur Respir J 42(1):145–155CrossRefPubMedGoogle Scholar
  11. 11.
    Bikov A, Pako J, Kovacs D, Tamasi L, Lazar Z, Rigo J, Losonczy G, Horvath I (2011) Exhaled breath volatile alterations in pregnancy assessed with electronic nose. Biomarkers 16(6):476–484CrossRefPubMedGoogle Scholar
  12. 12.
    Bikov A, Paschalaki K, Logan-Sinclair R, Horvath I, Kharitonov SA, Barnes PJ, Usmani OS, Paredi P (2013) Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm Med 13(1):43CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Bikov A, Lazar Z, Schandl K, Antus BM, Losonczy G, Horvath I (2011) Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiol Hung 98(3):321–328CrossRefPubMedGoogle Scholar
  14. 14.
    Kovacs D, Bikov A, Losonczy G, Murakozy G, Horvath I (2013) Follow up of lung transplant recipients using an electronic nose. J Breath Res 7(1):017117CrossRefPubMedGoogle Scholar
  15. 15.
    Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521PubMedGoogle Scholar
  16. 16.
    Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 8(5):597–619PubMedCentralPubMedGoogle Scholar
  17. 17.
    De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18CrossRefGoogle Scholar
  18. 18.
    Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180(11):1076–1082CrossRefPubMedGoogle Scholar
  19. 19.
    Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160CrossRefPubMedGoogle Scholar
  20. 20.
    Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors Actuators B Chem 72(1):41–50CrossRefGoogle Scholar
  21. 21.
    Chavez C, Coufal CD, Carey JB, Lacey RE, Beier RC, Zahn JA (2004) The impact of supplemental dietary methionine sources on volatile compound concentrations in broiler excreta. Poult Sci 83(6):901–910CrossRefPubMedGoogle Scholar
  22. 22.
    Maciejak TR, Kukawska-Tarnawska B, Tyszkiewicz J, Tysykiewicz S (2002) Multi-sensor odour detection and measurement of polluted food. Pol J Food Nutr Sci 12(53):45–48Google Scholar
  23. 23.
    D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2):170–176CrossRefPubMedGoogle Scholar
  24. 24.
    Dragonieri S, Annema JT, Schot R, van der Schee MP, Spanevello A, Carratu P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170CrossRefPubMedGoogle Scholar
  25. 25.
    Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171(11):1286–1291CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862CrossRefPubMedGoogle Scholar
  27. 27.
    Hu FB, Willett WC, Colditz GA, Ascherio A, Speizer FE, Rosner B, Hennekens CH, Stampfer MJ (1999) Prospective study of snoring and risk of hypertension in women. Am J Epidemiol 150(8):806–816CrossRefPubMedGoogle Scholar
  28. 28.
    Phillips M, Greenberg J, Cataneo RN (2000) Effect of age on the profile of alkanes in normal human breath. Free Radic Res 33(1):57–63CrossRefPubMedGoogle Scholar
  29. 29.
    Lechner M, Moser B, Niederseer D, Karlseder A, Holzknecht B, Fuchs M, Colvin S, Tilg H, Rieder J (2006) Gender and age specific differences in exhaled isoprene levels. Respir Physiol Neurobiol 154(3):478–483CrossRefPubMedGoogle Scholar
  30. 30.
    Cheng ZJ, Warwick G, Yates DH, Thomas PS (2009) An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J Breath Res 3(3):036003CrossRefPubMedGoogle Scholar
  31. 31.
    Dalton P, Gelperin A, Preti G (2004) Volatile metabolic monitoring of glycemic status in diabetes using electronic olfaction. Diabetes Technol Ther 6(4):534–544CrossRefPubMedGoogle Scholar
  32. 32.
    Timms C, Thomas PS, Yates DH (2012) Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res 6(1):016003CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laszlo Kunos
    • 1
  • Andras Bikov
    • 1
  • Zsofia Lazar
    • 1
  • Beata Zita Korosi
    • 1
  • Palma Benedek
    • 2
  • Gyorgy Losonczy
    • 1
  • Ildiko Horvath
    • 1
  1. 1.Department of PulmonologySemmelweis UniversityBudapestHungary
  2. 2.Department of Otorhinolaryngology and BronchologyHeim Pál Children’s HospitalBudapestHungary

Personalised recommendations