Advertisement

Sleep and Breathing

, Volume 18, Issue 3, pp 541–548 | Cite as

Downregulation of uncoupling protein-1 mRNA expression and hypoadiponectinemia in a mouse model of sleep apnea

  • Cintia Zappe FioriEmail author
  • Denis Martinez
  • Diego Baronio
  • Darlan Pase da Rosa
  • Nelson Alexandre Kretzmann
  • Luiz Felipe Forgiarini
  • Carolina Caruccio Montanari
  • Norma Possa Marroni
  • Alicia Carissimi
Original Article

Abstract

Purpose

The knowledge on the effect of intermittent hypoxia on adipose tissue-mediated processes is incipient. The aim of the present study was to assess the effect of a sleep apnea model on a limited set of specific molecular, biochemical, histological, and behavioral parameters of adipose tissue function.

Methods

Mice were exposed to either intermittent hypoxia or sham hypoxia during 8 h a day for 37 days. Uncoupling protein-1 expression in brown adipose tissue was measured by real-time PCR and immunohistochemistry. Digital quantification of adipose cells and immunohistochemistry of uncoupling protein-1 were performed to determine cell dimensions, positive area, and staining intensity. Serum levels of leptin, adiponectin, and cortisol were measured by ELISA.

Results

In comparison with the control group, animals in the hypoxia group had significantly lower chow ingestion, weight gain, and smaller white and brown adipocytes on histological examination. Adiponectin levels were also lower in the hypoxia group. Uncoupling protein-1 mRNA was abolished in the mice exposed to hypoxia; accordingly, fewer cells positive for uncoupling protein-1 and lighter staining intensity were observed in brown adipocytes.

Conclusions

An experimental model of sleep apnea produced changes in uncoupling protein-1 expression and adiponectin levels. These results confirm previous findings on the response of brown adipose tissue to intermittent hypoxia and indicate a yet-unknown interference of intermittent hypoxia on energy control, which may participate in the propensity to weight gain observed in patients with sleep apnea. Brown adipose tissue activity in this patient population needs to be further investigated.

Keywords

Brown adipose tissue Thermogenin Intermittent hypoxia Sleep disordered breathing Adiponectin 

Abbreviations

OSA

Obstructive sleep apnea

BAT

Brown adipose tissue

UCP-1

Uncoupling protein-1

Notes

Acknowledgments

This work was supported by the Hospital de Clínicas de Porto Alegre Research Incentive Fund (FIPE/HCPA), CNPq, and CAPES.

References

  1. 1.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Cizza G, Piaggi P, Lucassen EA, de Jonge L, Walter M, Mattingly MS, Kalish H, Csako G, Rother KI, Sleep Extension Study Group (2013) Obstructive sleep apnea is a predictor of abnormal glucose metabolism in chronically sleep deprived obese adults. PLoS One 8(5):e65400PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kawano Y, Tamura A, Kadota J (2012) Association between the severity of obstructive sleep apnea and the ratio of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol. Metabolism 61(2):186–192PubMedCrossRefGoogle Scholar
  4. 4.
    Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y, Gozal D (2011) Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med 184(11):1305–1312PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Li RC, Haribabu B, Mathis SP, Kim J, Gozal D (2011) Leukotriene B4 receptor-1 mediates intermittent hypoxia-induced atherogenesis. Am J Respir Crit Care Med 184(1):124–131PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Reinke C, Bevans-Fonti S, Drager LF, Shin MK, Polotsky VY (2011) Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol 111(3):881–890PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Phillips BG, Kato M, Narkiewicz K, Choe I, Somers VK (2000) Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol 279(1):H234–H237PubMedGoogle Scholar
  8. 8.
    Lubrano C, Saponara M, Barbaro G, Specchia P, Addessi E, Costantini D, Tenuta M, Di Lorenzo G, Genovesi G, Donini LM, Lenzi A, Gnessi L (2012) Relationships between body fat distribution, epicardial fat and obstructive sleep apnea in obese patients with and without metabolic syndrome. PLoS One 7(10):e47059PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Phillips BG, Hisel TM, Kato M, Pesek CA, Dyken ME, Narkiewicz K, Somers VK (1999) Recent weight gain in patients with newly diagnosed obstructive sleep apnea. J Hypertens 17(19):1297–1300PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez D, Fiori CZ, Baronio D, Carissimi A, Kaminski RS, Kim LJ, Rosa DP, Bos  (2010) Brown adipose tissue: is it affected by IH? Lipids Health Dis 9:121PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Martinez D, Vasconcellos LF, de Oliveira PG, Konrad SP (2008) Weight loss and brown adipose tissue reduction in rat model of sleep apnea. Lipids Health Dis 7:26PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97(7):698–706PubMedCrossRefGoogle Scholar
  13. 13.
    Li J, Savransky V, Nanayakkara A, Smith PL, O’Donnell CP, Polotsky VY (2007) Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol 102(2):557–563PubMedCrossRefGoogle Scholar
  14. 14.
    Tews D, Wabitsch M (2011) Renaissance of brown adipose tissue. Horm Res Paediatr 75(4):231–239PubMedCrossRefGoogle Scholar
  15. 15.
    Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate–polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73(3):577–583PubMedCrossRefGoogle Scholar
  16. 16.
    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol 293(2):E444–E452Google Scholar
  17. 17.
    Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508PubMedCrossRefGoogle Scholar
  18. 18.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525PubMedCrossRefGoogle Scholar
  20. 20.
    Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD (2011) Brown adipose tissue in morbidly obese subjects. PLoS One 6(2):e17247PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64(1):1–64PubMedGoogle Scholar
  22. 22.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359PubMedCrossRefGoogle Scholar
  23. 23.
    Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86(8):3815–3819PubMedCrossRefGoogle Scholar
  24. 24.
    Vatansever E, Surmen-Gur E, Ursavas A, Karadag M (2011) Obstructive sleep apnea causes oxidative damage to plasma lipids and proteins and decreases adiponectin levels. Sleep Breath 15(3):275–282PubMedCrossRefGoogle Scholar
  25. 25.
    Li Q, Li C, Shen JC, Liu H, Huang M, Zhang XL (2011) Effect of chronic intermittent hypoxia on mitochondrial function of rat genioglossus cells and intervention role of adiponectin. Zhonghua Jie He He Hu Xi Za Zhi 34(1):21–25PubMedGoogle Scholar
  26. 26.
    Huang H, Zhang X, Ding N, Li Q, Min Y, Zhang X (2012) Effects of chronic intermittent hypoxia on genioglossus in rats. Sleep Breath 16(2):505–510PubMedCrossRefGoogle Scholar
  27. 27.
    Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR, O’Donnell CP (2003) Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol 552(1):253–264PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Gilmartin GS, Lynch M, Tamisier R, Weiss JW (2010) Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol 299(3):H925–H931PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Vgontzas AN, Pejovic S, Zoumakis E, Lin HM, Bentley CM, Bixler EO, Sarrigiannidis A, Basta M, Chrousos GP (2007) Hypothalamic–pituitary–adrenal axis activity in obese men with and without sleep apnea: effects of continuous positive airway pressure therapy. J Clin Endocrinol Metab 92(11):4199–4207PubMedCrossRefGoogle Scholar
  30. 30.
    Henley DE, Russell GM, Douthwaite JA, Wood SA, Buchanan F, Gibson R, Woltersdorf WW, Catterall JR, Lightman SL (2009) Hypothalamic–pituitary–adrenal axis activation in obstructive sleep apnea: the effect of continuous positive airway pressure therapy. J Clin Endocrinol Metab 94(11):4234–4242PubMedCrossRefGoogle Scholar
  31. 31.
    Nedergaard J, Cannon B (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 11(4):268–272PubMedCrossRefGoogle Scholar
  32. 32.
    National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, WashingtonGoogle Scholar
  33. 33.
    Halpern BN, Pacaud A (1951) Technique of obtaining blood samples from small laboratory animals by puncture of ophthalmic plexus. C R Seances Soc Biol Fil 145(19–20):1465–1466PubMedGoogle Scholar
  34. 34.
    Di Girolamo M, Mendlinger S, Fertig JW (1971) A simple method to determine fat cell size and number in four mammalian species. Am J Physiol 221(3):850–858PubMedGoogle Scholar
  35. 35.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  36. 36.
    Murano I, Zingaretti CM, Cinti S (2005) The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 1:121–130Google Scholar
  37. 37.
    Cancello R, Zingaretti MC, Sarzani R, Ricquier D, Cinti S (1998) Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology 139(11):4747–4750PubMedCrossRefGoogle Scholar
  38. 38.
    Rogers NH, Smith RG (2012) Brown-to-white transition in subcutaneous fat: linking aging and disease. Aging (Albany NY) 4:728–729Google Scholar
  39. 39.
    Beaudry JL, McClelland GB (2010) Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation. Comp Biochem Physiol B Biochem Mol Biol 157(3):301–309PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang X, Lam KS, Ye H, Chung SK, Zhou M, Wang Y, Xu A (2010) Adipose tissue-specific inhibition of hypoxia-inducible factor 1{alpha} induces obesity and glucose intolerance by impeding energy expenditure in mice. J Biol Chem 285(43):32869–32877PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Wu Q, Clark MS, Palmiter RD (2012) Deciphering a neuronal circuit that mediates appetite. Nature 483(7391):594–597PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F (2009) Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58(10):2258–2266PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bernier NJ, Gorissen M, Flik G (2012) Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. J Exp Biol 215:2273–2282PubMedCrossRefGoogle Scholar
  44. 44.
    Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161PubMedCrossRefGoogle Scholar
  45. 45.
    Lonnquist F, Arner P, Nordfors L, Schalling M (1995) Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1(9):950–953CrossRefGoogle Scholar
  46. 46.
    Friedman J, Halaas J (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770PubMedCrossRefGoogle Scholar
  47. 47.
    Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100(2):227–235PubMedCrossRefGoogle Scholar
  48. 48.
    Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293(4):E1118–E1128PubMedCrossRefGoogle Scholar
  49. 49.
    Nakagawa Y, Kishida K, Kihara S, Sonoda M, Hirata A, Yasui A, Nishizawa H, Nakamura T, Yoshida R, Shimomura I, Funahashi T (2008) Nocturnal reduction in circulating adiponectin concentrations related to hypoxic stress in severe obstructive sleep apnea–hypopnea syndrome. Am J Physiol Endocrinol Metab 294(4):E778–E784PubMedCrossRefGoogle Scholar
  50. 50.
    Tomfohr LM, Edwards KM, Dimsdale JE (2012) Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev 16(3):243–249PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Zoccal DB, Bonagamba LG, Antunes-Rodrigues J, Machado BH (2007) Plasma cortisol levels is elevated in rats submitted to chronic intermittent hypoxia. Auton Neurosci 134(1–2):115–117PubMedCrossRefGoogle Scholar
  52. 52.
    Panaree B, Chantana M, Wasana S, Chairat N (2011) Effects of obstructive sleep apnea on serum brain-derived neurotrophic factor protein, cortisol, and lipid levels. Sleep Breath 15(4):649–656PubMedCrossRefGoogle Scholar
  53. 53.
    Louis M, Punjabi NM (2009) Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol 106(5):1538–1544PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cintia Zappe Fiori
    • 1
    • 2
    Email author
  • Denis Martinez
    • 1
    • 2
    • 3
  • Diego Baronio
    • 3
  • Darlan Pase da Rosa
    • 3
    • 4
  • Nelson Alexandre Kretzmann
    • 5
    • 6
  • Luiz Felipe Forgiarini
    • 7
  • Carolina Caruccio Montanari
    • 8
  • Norma Possa Marroni
    • 9
  • Alicia Carissimi
    • 3
  1. 1.Postgraduate Program in CardiologyUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Cardiology Unit, Hospital de Clinicas de Porto Alegre (HCPA)UFRGSPorto AlegreBrazil
  3. 3.Postgraduate Program in Medical SciencesUFRGSPorto AlegreBrazil
  4. 4.Faculdade Cenecista de Bento GonçalvesBento GonçalvesBrazil
  5. 5.Graduate Program in PathologyUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreBrazil
  6. 6.Gene Therapy Centre, Experimental Research CentreHCPAPorto AlegreBrazil
  7. 7.Postgraduate Program in Pulmonary MedicineUFRGSPorto AlegreBrazil
  8. 8.Undergraduate Program in NursingUFCSPAPorto AlegreBrazil
  9. 9.Universidade Luterana do BrasilCanoasBrazil

Personalised recommendations