Skip to main content

Advertisement

Log in

Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe?

  • Hypoxia Conference
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Introduction

Exposures to natural and simulated altitudes entail reduced oxygen availability and thus hypoxia. Depending on the level of hypoxia, the duration of exposure, the individual susceptibility, and preexisting diseases, health problems of variable severity may arise. Although millions of people are regularly or occasionally performing mountain sport activities, are transported by airplanes, and are more and more frequently exposed to short-term hypoxia in athletic training facilities or at their workplace, e.g., with fire control systems, there is no clear consensus on the level of hypoxia which is generally well tolerated by human beings when acutely exposed for short durations (hours to several days).

Conclusions

Available data from peer-reviewed literature report adaptive responses even to altitudes below 2,000 m or corresponding normobaric hypoxia (FiO2 > 16.4%), but they also suggest that most of exposed subjects without severe preexisting diseases can tolerate altitudes up to 3,000 m (FiO2 > 14.5%) well. However, physical activity and unusual environmental conditions may increase the risk to get sick. Large interindividual variations of responses to hypoxia have to be expected, especially in persons with preexisting diseases. Thus, the assessment of those responses by hypoxic challenge testing may be helpful whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burtscher M (2004) Endurance performance of the elderly mountaineer: requirements, limitations, testing, and training. Wien Klin Wochenschr 116:703–714

    Article  PubMed  Google Scholar 

  2. Association AM, Committee AS, Subcommittee CA (2008) Cabin cruising altitudes for regular transport aircraft. Aviat Space Environ Med 79:433–439

    Article  Google Scholar 

  3. Angerer P, Nowak D (2003) Working in permanent hypoxia for fire protection—impact on health. Int Arch Occup Environ Health 76:87–102

    PubMed  Google Scholar 

  4. Burtscher M (2010) Effects of acute altitude exposure: which altitude can be tolerated? Wien Med Wochenschr 160:362–371

    Article  PubMed  Google Scholar 

  5. Martin SE, Bradley JM, Buick JB, Bradbury I, Elborn JS (2007) Flight assessment in patients with respiratory disease: hypoxic challenge testing vs. predictive equations. QJM 100:361–367

    Article  PubMed  CAS  Google Scholar 

  6. Penaloza D, Arias-Stella J (2007) The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 115:1132–1146

    Article  PubMed  Google Scholar 

  7. British Thoracic Society Standards of Care Committee (2002) Managing passengers with respiratory disease planning air travel: British Thoracic Society recommendations. Thorax 57:289–304

    Article  Google Scholar 

  8. Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N (2010) Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports 20:651–661

    Article  PubMed  CAS  Google Scholar 

  9. Robertson EY, Saunders PU, Pyne DB, Gore CJ, Anson JM (2010) Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur J Appl Physiol 110:379–387

    Article  PubMed  Google Scholar 

  10. Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA (2004) Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 96:931–937

    Article  PubMed  CAS  Google Scholar 

  11. Burtscher M, Brandstätter E, Gatterer H (2008) Preacclimatization in simulated altitudes. Sleep Breath 12:109–114

    Article  PubMed  CAS  Google Scholar 

  12. Muza S, Fulco C, Beidleman B, Staab J, Tapia M, Elliott S, Elliott L, Root E, Money A, Cymerman A (2006) Normobaric intermittent hypoxic exposures decrease AMS at 4300 m altitude. High Alt Med Biol 4:338

    Google Scholar 

  13. Burtscher M, Haider T, Domej W, Linser T, Gatterer H, Faulhaber M, Pocecco E, Ehrenburg I, Tkatchuk E, Koch R, Bernardi L (2009) Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir Physiol Neurobiol 165:97–103

    Article  PubMed  CAS  Google Scholar 

  14. Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, Linser A, Ehrenbourg I, Tkatchouk E, Burtscher M, Bernardi L (2009) Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J Hypertens 27:1527–1532

    Article  Google Scholar 

  15. Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96:247–254

    Article  PubMed  Google Scholar 

  16. Tin'kov AN, Aksenov VA (2002) Effects of intermittent hypobaric hypoxia on blood lipid concentrations in male coronary heart disease patients. High Alt Med Biol 3:277–282

    Article  PubMed  Google Scholar 

  17. Velizhanina IA, Evdokomova OA, Gapon LI, Vdovenko SV (2002) The response to normoxic hypoxia and its duration in arterial hypertension patients as shown by a prospective study. Klin Med (Mosk) 80:22–26

    CAS  Google Scholar 

  18. Netzer NC, Chytra R, Küpper T (2008) Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath 12:129–134

    Article  PubMed  Google Scholar 

  19. Lumb AB (2000) Nunn's applied respiratory physiology, 5th edn. Butterworth-Heinemann, Oxford, pp 472–481

    Google Scholar 

  20. McNicol MW, Campbell EJM (1965) Severity of respiratory failure. Lancet 1:336–338

    Article  PubMed  CAS  Google Scholar 

  21. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE, Caudwell Xtreme Everest Research Group (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 360:140–149

    Article  PubMed  CAS  Google Scholar 

  22. Ainslie PN, Barach A, Cummings KJ, Murrell C, Hamlin M, Hellemans J (2007) Cardiorespiratory and cerebrovascular responses to acute poikilocapnic hypoxia following intermittent and continuous exposure to hypoxia in humans. J Appl Physiol 102:1953–1961

    Article  PubMed  Google Scholar 

  23. Bärtsch P, Saltin B (2008) General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 18(Suppl 1):1–10

    Article  PubMed  Google Scholar 

  24. Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754

    Article  PubMed  CAS  Google Scholar 

  25. Lenfant C, Sullivan K (1971) Adaptation to high altitude. N Engl J Med 284:1298–1309

    Article  PubMed  CAS  Google Scholar 

  26. Smith CA, Dempsey JA, Hornbein TF (2001) Control of breathing at high altitude. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Marcel Dekker, New York, pp 139–173

    Google Scholar 

  27. Mollard P, Woorons X, Letournel M, Lamberto C, Favret F, Pichon A, Beaudry M, Richalet JP (2007) Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. Eur J Appl Physiol 100:663–673

    Article  PubMed  CAS  Google Scholar 

  28. Burtscher M, Bachmann O, Hatzl T, Hotter B, Likar R, Philadelphy M, Nachbauer W (2001) Cardiopulmonary and metabolic responses in healthy elderly during a one-week hiking program at high altitude. Eur J Appl Physiol 84:379–386

    Article  PubMed  CAS  Google Scholar 

  29. Katayama K, Ishida K, Iwasaki K, Miyamura M (2009) Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in human. Eur J Appl Physiol 105:815–821

    Article  PubMed  Google Scholar 

  30. Townsend NE, Gore CJ, Hahn AG, Aughey RJ, Clark SA, Kinsman TA, McKenna MJ, Hawley JA, Chow CM (2005) Hypoxic ventilatory response is correlated with increased submaximal exercise ventilation after live high, train low. Eur J Appl Physiol 94:207–215

    Article  PubMed  Google Scholar 

  31. Wolfel EE, Levine BD (2001) The cardiovascular system at high altitude: heart and systemic circulation. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Marcel Dekker, New York, pp 235–292

    Google Scholar 

  32. Rimoldi SF, Sartori C, Seiler C, Delacrétaz E, Mattle HP, Scherrer U, Allemann Y (2010) High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis 52:512–524

    Article  PubMed  Google Scholar 

  33. Erdmann J, Sun KT, Masar P, Niederhauser H (1998) Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol 81:266–270

    Article  PubMed  CAS  Google Scholar 

  34. Reeves JT, Wagner WW Jr, McMurtry IF, Grover RF (1979) Physiological effects of high altitude on the pulmonary circulation. Int Rev Physiol 20:289–310

    PubMed  CAS  Google Scholar 

  35. Hainsworth R, Drinkhill MJ (2007) Cardiovascular adjustments for life at high altitude. Respir Physiol Neurobiol 158:204–211

    Article  PubMed  Google Scholar 

  36. Mazzeo RS, Wolfel EE, Buttefield GE, Reeves JT (1994) Sympathetic response during 21 days at high altitude. Metabolism 43:1226–1232

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen AM, Bisgard GE, Vidruk EH (1988) Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol 65:1796–1802

    PubMed  CAS  Google Scholar 

  38. Kumar P (2009) Systemic effects resulting from carotid body stimulation-invited article. Adv Exp Med Biol 648:223–233

    Article  PubMed  Google Scholar 

  39. Brooks GA, Butterfield GE (2001) Metabolic response of lowlanders to high altitude exposure: malnutrition versus the effect of hypoxia. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Marcel Dekker, New York, pp 569–600

    Google Scholar 

  40. Braun B (2008) Effects of high altitude on substrate use and metabolic economy: cause and effect? Med Sci Sports Exerc 40:1495–1500

    Article  PubMed  Google Scholar 

  41. Kelly KR, Williamson DL, Fealy CE, Hriz DA, Krishnan RK, Huang H, Ahn J, Loomis JL, Kirwan JP (2010) Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans. Metabolism 59:200–205

    Article  PubMed  CAS  Google Scholar 

  42. Hamad N, Travis SP (2006) Weight loss at high altitude: pathophysiology and practical implications. Eur J Gastroenterol Hepatol 18:5–10

    Article  PubMed  Google Scholar 

  43. Ernsting J (1984) Mild hypoxia and the use of oxygen in flight. Aviat Space Environ Med 55:407–410

    PubMed  CAS  Google Scholar 

  44. Virues-Ortega J, Buela-Casal G, Garrido E, Alcazar B (2004) Neuropsychological functioning associated with high-altitude exposure. Neuropsychol Rev 14:197–224

    Article  PubMed  Google Scholar 

  45. Bolmont B, Bouquet C, Thullier F (2001) Relationships of personality traits with performance in reaction time, psychomotor ability, and mental efficiency during a 31-day simulated climb of Mount Everest in a hypobaric chamber. Percept Mot Skills 92:1022–1030

    PubMed  CAS  Google Scholar 

  46. Fowler B, Pralic H, Brabant M (1994) Acute hypoxia fails to influence two aspects of short-term memory: implications for the source of cognitive deficits. Aviat Space Environ Med 65:641–645

    PubMed  CAS  Google Scholar 

  47. Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and mountain medicine: proceeding of the international hypoxia symposium. Queen City Printers, Burlington, pp 272–274

    Google Scholar 

  48. Hackett PH, Roach RC (2001) High-altitude illness. N Engl J Med 345:107–114

    Article  PubMed  CAS  Google Scholar 

  49. Ward MP, Milledge JS, West JB (2000) High altitude medicine and physiology, 3rd edn. Arnold, London

    Google Scholar 

  50. Mairer K, Wille M, Bucher T, Burtscher M (2009) Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol 10:239–245

    Article  PubMed  Google Scholar 

  51. Burtscher M, Flatz M, Faulhaber M (2004) Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol 5:335–340

    PubMed  Google Scholar 

  52. Yaron M, Niermeyer S (2008) Travel to high altitude with young children: an approach for clinicians. High Alt Med Biol 9:265–269

    Article  PubMed  Google Scholar 

  53. Southard A, Niermeyer S, Yaron M (2007) Language used in Lake Louise Scoring System underestimates symptoms of acute mountain sickness in 4- to 11-year-old children. High Alt Med Biol 8:124–130

    Article  PubMed  Google Scholar 

  54. Scrase E, Laverty A, Gavlak JC, Sonnappa S, Levett DZ, Martin D, Grocott MP, Stocks J (2009) The Young Everest study: effects of hypoxia at high altitude on cardiorespiratory function and general well-being in healthy children. Arch Dis Child 94:621–626

    Article  PubMed  CAS  Google Scholar 

  55. Bloch J, Duplain H, Rimoldi SF, Stuber T, Kriemler S, Allemann Y, Sartori C, Scherrer U (2009) Prevalence and time course of acute mountain sickness in older children and adolescents after rapid ascent to 3450 meters. Pediatrics 123:1–5

    Article  PubMed  Google Scholar 

  56. Hackett PH, Rennie D, Levine HD (1976) The incidence, importance and prophylaxis of acute mountain sickness. Lancet 2:1149–1155

    Article  PubMed  CAS  Google Scholar 

  57. Wille M, Bucher T, Mairer K, Burtscher M (2007) Alters- und geschlechtsspezifische Inzidenz der akuten Bergkrankheit (ABK) in den Alpen. In: Schobersberger W, Domej W, Sumann G, Berghold F (eds) Jahrbuch 2007, Österr. Ges. für Alpin- und Höhenmedizin, pp 103–113

  58. Behan M, Wenninger JM (2008) Sex steroidal hormones and respiratory control. Respir Physiol Neurobiol 164:213–221

    Article  PubMed  CAS  Google Scholar 

  59. Muza SR, Rock PB, Fulco CS, Zamudio S, Braun B, Cymerman A, Butterfield GE, Moore LG (2001) Women at altitude: ventilatory acclimatization at 4300 m. J Appl Physiol 91:1791–1799

    PubMed  CAS  Google Scholar 

  60. Baumann H, Bung P, Fallenstein F, Huch A, Huch R (1985) Reaktion von Mutter und Fetus auf die körperliche Belastung in der Höhe [Reaction of mother and fetus to physical stress at high altitude]. Geburtshilfe Frauenheilkd 45:869–876

    Article  PubMed  CAS  Google Scholar 

  61. Keyes LE, Armaza JF, Niermeyer S, Vagas E, Young DA, Moore LG (2003) Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res 54:20–25

    Article  PubMed  Google Scholar 

  62. D'Este D, Mantovan R, Martino A, D'Este F, Artusi L, Allibardi P, Franceschi M, Zerio C, Pascotto P (1991) Blood pressure changes at rest and during effort in normotensive and hypertensive subjects in response to altitude acute hypoxia. G Ital Cardiol 21:643–649

    PubMed  Google Scholar 

  63. Luks AM (2009) Should travellers with hypertension adjust their medications when traveling to high altitude? High Alt Med Biol 10:11–15

    Article  PubMed  CAS  Google Scholar 

  64. Hultgren HN (1992) Effects of altitude upon cardiovascular disease. J Wilderness Med 3:301–308

    Article  Google Scholar 

  65. Burtscher M (2007) Risk of cardiovascular events during mountain activities. Adv Exp Med Biol 618:1–11

    Article  PubMed  Google Scholar 

  66. Burtscher M, Ponchia A (2010) The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis 52:507–511

    Article  PubMed  Google Scholar 

  67. Domej W, Trapp M, Miggitsch EM, Krakher T, Riedlbauer R, Roher P, Schwaberger G (2008) Arterial hypertension due to altitude. Wien Med Wochenschr 158:503–508

    Article  PubMed  Google Scholar 

  68. Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med 233:627–650

    Article  CAS  Google Scholar 

  69. Vona M, Mazzuero G, Lupi A, Vettorato C, Bosso P, Cohen-Solal A (2006) Effects of altitude on effort tolerance in non-acclimatized patients with ischemic left ventricular dysfunction. Eur J Cardiovasc Prev Rehabil 13:617–624

    Article  PubMed  Google Scholar 

  70. Levine BD, Zuckerman JH, deFilippi CR (1997) Effect of high-altitude exposure in the elderly. The Tenth Mountain Division study. Circulation 96:1224–1232

    PubMed  CAS  Google Scholar 

  71. Dehnert C, Bärtsch P (2010) Can patients with coronary heart disease go to high altitude? High Alt Med Biol 11:183–188

    Article  PubMed  Google Scholar 

  72. Rodway GW, Hoffmann LA, Sanders MH (2004) High-altitude related disorders part II: prevention, special populations, and chronic medical conditions. Heart Lung 33:3–12

    Article  PubMed  Google Scholar 

  73. Luks AM, Swenson ER (2007) Travel to high altitude with pre-existing lung disease. Eur Respir J 29:770–792

    Article  PubMed  CAS  Google Scholar 

  74. Juchet A, Guilhem M, Bremont F, Rance F, Dutau G (1999) Cure climatique et allergie respiratoire [Climate therapy for children with respiratory allergy]. Rev Mal Respir 16:235–240

    PubMed  CAS  Google Scholar 

  75. Götz M, Deutsch J, Singer P (1978) Summer holiday camps for asthmatic children—an attempted assessment. Wien Klin Wochenschr 90:699–702

    PubMed  Google Scholar 

  76. Cogo A, Basnyat B, Legnani D, Allegra L (1997) Bronchial asthma and airway hyperresponsiveness at high altitude. Respiration 64:444–449

    Article  PubMed  CAS  Google Scholar 

  77. Allegra L, Cogo A, Legnani D, Dano PL, Fasano V, Negretto GG (1995) High altitude exposure reduces bronchial responsiveness to hypo-osmolar aerosol in lowland asthmatics. Eur Respir J 8:1842–1846

    Article  PubMed  CAS  Google Scholar 

  78. Kalson NS, Davies AJ, Stokes S, Frost H, Whitehead AG, Tyrrell-Marsh I, Earl MD (2007) Climbers with diabetes do well on Mount Kilimanjaro. Diabet Med 24:1496

    Article  PubMed  CAS  Google Scholar 

  79. Weisbrod CJ, Eastwood PR, O'Driscoll G, Green DJ (2005) Abnormal ventilatory responses to hypoxia in type 2 diabetes. Diabet Med 22:563–568

    Article  PubMed  CAS  Google Scholar 

  80. Miura H, Wachtel RE, Loberiza FR, Saito T, Miura M, Nicolosi AC, Gutterman DD (2003) Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res 92:151–158

    Article  PubMed  CAS  Google Scholar 

  81. Gong H Jr, Tashkin DP, Lee EY, Simmons MS (1984) Hypoxia-altitude simulation test. Evaluation of patients with chronic airway obstruction. Am Rev Respir Dis 130:980–986

    PubMed  Google Scholar 

  82. Dine CJ, Kreider ME (2008) Hypoxia altitude simulation test. Chest 133:1002–1005

    Article  PubMed  Google Scholar 

  83. Cramer D, Ward S, Geddes D (1996) Assessment of oxygen supplementation during air travel. Thorax 51:202–203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burtscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burtscher, M., Mairer, K., Wille, M. et al. Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe?. Sleep Breath 16, 435–442 (2012). https://doi.org/10.1007/s11325-011-0521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0521-1

Keywords

Navigation