Sleep and Breathing

, Volume 14, Issue 1, pp 51–57 | Cite as

Effects of allopurinol on cardiac function and oxidant stress in chronic intermittent hypoxia

  • Antoinette L. Williams
  • Ling Chen
  • Steven M. Scharf
Original Article



Obstructive sleep apnea is associated with left ventricular (LV) dysfunction, oxidant stress, and chronic intermittent hypoxia (CIH). Allopurinol (ALLO) is a xanthine oxidase inhibitor that also scavenges free radicals.


Using an animal model of CIH we hypothesized that ALLO decreases oxidant stress and cardiac injury.

Materials and methods

Rats were exposed to either CIH (nadir 4–6%, approximately once per minute) or room air (handled controls, HC) for 8 h a day for 10 days. Four treatment groups (six to ten animals per group) were studied: CIH/ALLO, CIH/placebo (PLAC), HC/ALLO, and HC/PLAC. Outcomes included myocardial lipid peroxides (LPO) for oxidant stress, fraction shortening of the LV cavity for cardiac function (LVFS) and an assay for myocyte apoptosis.


LPO was lower in CIH/ALLO group compared to CIH/PLAC (179 ± 102 vs. 589 ± 68 mcg/mg protein, p < 0.05). LVFS was greater in ALLO animals than PLAC in both CIH and HC (CIH/ALLO 48.6 ± 2.3% vs. CIH/PLAC 38 ± 1.4%; HC/ALLO 64.9 ± 1.8% vs. HC/PLAC 51.5 ± 1.5%; both p < 0.05). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed fewer apoptotic nuclei in LV myocardium in CIH/ALLO compared to CIH/PLAC (38.0 ± 1.4 vs. 48.6 ± 2.3 positive nuclei per 2.5 mm2 area, p < 0.05).


ALLO is associated with improvement in CIH-associated oxidant stress, myocardial dysfunction, and apoptosis in rats.


Obstructive sleep apnea Oxidative stress Allopurinol Myocardial function Apoptosis Intermittent hypoxia Cardiac function Left ventricular dysfunction 


  1. 1.
    Young T, Peppard PE (2000) Epidemiological evidence for and association of sleep disordered breathing with hypertension and cardiovascular disease. In: Bradley TD, Floras JS (eds) Sleep apnea: implications in cardiovascular and cerebrovascular disease. Marcel Dekker, New York, pp 261–284Google Scholar
  2. 2.
    Lattimore JD, Celermajer DS, Wilcox I (2003) Obstructive sleep apnea and cardiovascular disease. J Am Coll Cardiol 41:1429–1437CrossRefPubMedGoogle Scholar
  3. 3.
    Lavie L (2005) Sleep-disordered breathing and cerebrovascular disease: a mechanistic approach. Neurol Clin 23:1059–1075CrossRefPubMedGoogle Scholar
  4. 4.
    Podszus TE, Greenberg H, Scharf SM (1993) Influence of sleep state and sleep disordered breathing on cardiovascular function. In: Sullivan CE, Saunders NA (eds) Sleep and breathing II. Marcel Dekker, New York, pp 257–310Google Scholar
  5. 5.
    Lavie P, Here P, Hoffstein V (2000) Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ 320:479–482CrossRefPubMedGoogle Scholar
  6. 6.
    Grote L, Hedner J, Peter JH (2000) Sleep-related breathing disorder is an independent factor for uncontrolled hypertension. J Hypertens 18:679–685CrossRefPubMedGoogle Scholar
  7. 7.
    Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, O’Connor GT, Boland LL, Schwartz JE, Samet JM, for the Sleep Heart Health Study Research group (2001) Sleep-disordered breathing and cardiovascular disease cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163:19–25PubMedGoogle Scholar
  8. 8.
    Moore T, Rabben T, Wiklund U, Franklin KA, Eriksson P (1996) Sleep-disordered breathing in men with coronary artery disease. Chest 109:659–663CrossRefGoogle Scholar
  9. 9.
    Lavie L (2004) Sleep apnea syndrome, endothelial dysfunction, and cardiovascular morbidity. Sleep 27:1053–1055PubMedGoogle Scholar
  10. 10.
    Sica AL, Greenberg HE, Ruggiero DA, Scharf SM (2000) Chronic intermittent hypoxia: a model of sympathetic activation in the rat. Resp Physiol 121:173–184CrossRefGoogle Scholar
  11. 11.
    Williams A, Scharf SM (2007) Obstructive sleep apnea, cardiovascular disease, and inflammation—is NF-kB the key? Sleep Breath 11:69–76CrossRefPubMedGoogle Scholar
  12. 12.
    Chen L, Einbinder E, Zhang Q, Hasday J, Balke WC, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Resp Crit Care Med 172:915–920CrossRefPubMedGoogle Scholar
  13. 13.
    Chen L, Zhang J, Gan TX, Chen-Izu Y, Hasday JD, Karmazyn M, Balke CW, Scharf SM (2008) Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia. J Appl Physiol 104:218–223CrossRefPubMedGoogle Scholar
  14. 14.
    Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7:35–51CrossRefPubMedGoogle Scholar
  15. 15.
    Lavie L, Vishnevsky A, Lavie P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27:123–128PubMedGoogle Scholar
  16. 16.
    Richter C, Gogvadze V, Laffranchi R et al (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74PubMedGoogle Scholar
  17. 17.
    McCord JM (1985) Oxygen derived free radicals in postischemic tissue injury. New Engl J Med 312:159–163PubMedCrossRefGoogle Scholar
  18. 18.
    Row BW, Liu R, Xu W, Lheirandish L, Gozal D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Resp Crit Care Med 167:1548–1553CrossRefPubMedGoogle Scholar
  19. 19.
    Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114CrossRefPubMedGoogle Scholar
  20. 20.
    Biagi P, Abate L (2005) Heart failure, oxidative stress and allopurinol. Monaldi Arch Chest Dis 64:33–37PubMedGoogle Scholar
  21. 21.
    Movahed A, Nairg KG, Ashavaid TF (1996) Free radical generation and the role of allopurinol as a cardioprotective agent during coronary artery bypass grafting surgery. Can J Cardiol 1996(12):138–144Google Scholar
  22. 22.
    George J, Struthers A (2008) The role of urate and xanthine oxidase inhibitors in cardiovascular disease. Cardiovascular Therapeutics 26:59–64PubMedGoogle Scholar
  23. 23.
    Kittleson M, Hare J (2005) Xanthine oxidase inhibitors: an emerging class of drugs for heart failure. Eur Heart J 26:1458–1460CrossRefPubMedGoogle Scholar
  24. 24.
    Hayashi K et al (2008) Xanthine oxidase inhibition improves left ventricular dysfunction in dilated cardiomyopathic hamsters. Journal of Cardiac Failure 14:238–244CrossRefPubMedGoogle Scholar
  25. 25.
    Rhoden E, Teloken C, Lucas M, Rhoden C, Mauri M, Zettler C, Bello-Klein A, Barrous E (2000) Protective effect of allopurinol in the renal ischemic-reperfusion in uninephrectomized rats. Gen Pharmacol 35:189–193PubMedGoogle Scholar
  26. 26.
    Solh AA, Saliba R, Bosinski T, Grant BJ, Berbary E, Miller N (2006) Allopurinol improves endothelial dysfunction in sleep apnea: a randomized control trial. Eur Respir J 27:997–1002PubMedGoogle Scholar
  27. 27.
    Hoshikawa Y, Ono S, Suzuki S et al (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90:1299–1306PubMedGoogle Scholar
  28. 28.
    Solh A, Akinnusi M, Baddoura F, Mankowski C (2007) Endothelial Cell Apoptosis in Obstructive Sleep Apnea. American Journal of Respiratory Critical Care Medicine.Google Scholar
  29. 29.
    Berry C and Hare J (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 589–606.Google Scholar
  30. 30.
    Landmesser U, Drexler H (2002) Allopurinol and endothelial functionin heart failure future or fantasy. Circulation 106:173–175CrossRefPubMedGoogle Scholar
  31. 31.
    Doehner W etc (2002). Effects of Xanthine Oxidase Inhibititon With Allopurinol on Endothelial Dysfunction and peripheral blood flowin Hyperuricemic Patients with Chronic Heart Failure. Circulation 2619–2624.Google Scholar
  32. 32.
    Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89CrossRefPubMedGoogle Scholar
  33. 33.
    Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84CrossRefPubMedGoogle Scholar
  34. 34.
    Midaoui AE, deChamplain J (2002) Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension 39:303–307CrossRefPubMedGoogle Scholar
  35. 35.
    Kogler H, Fraser M, McCune S, Altschuld R, Marban E (2003) Disproportionate enchancement of myocardial contractility by the xanthine oxidase inhibitor oxypurinol in failing rat myocardium. Cardiovasc Res 59:582–592CrossRefPubMedGoogle Scholar
  36. 36.
    Saavedra WF, Paolocci N, St John ME, Skaf MW, Stewart GC, Xie JS, Harrison RW, Zeichner J, Mudrick D, Marban E, Kass DA, Hare JM (2002) Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90:297–304CrossRefPubMedGoogle Scholar
  37. 37.
    Stull LB, Leppo MK, Szweda L, Gao WD, Marban E (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95:1005–1011CrossRefPubMedGoogle Scholar
  38. 38.
    Scharf SM, Williams AL, Chen L, Wu J (2008) Short term chronic intermittent hypoxia leads to cardiac dysfunction and oxidative stress. Sleep 31:A182 (abstract supplement)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Antoinette L. Williams
    • 2
  • Ling Chen
    • 1
  • Steven M. Scharf
    • 1
    • 3
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.Department of MedicineUniversity of South Carolina School of MedicineColumbiaUSA
  3. 3.Sleep Disorders CenterUniversity of MarylandBaltimoreUSA

Personalised recommendations