Sleep and Breathing

, Volume 11, Issue 3, pp 177–185

Inflammatory proteins in patients with obstructive sleep apnea with and without daytime sleepiness

  • Mónica de la Peña Bravo
  • Laura D. Serpero
  • Antonia Barceló
  • Ferran Barbé
  • Alvar Agustí
  • David Gozal
Original Article

Abstract

Excessive daytime sleepiness (EDS) is one of the most frequent symptoms in patients with obstructive sleep apnea syndrome (OSAS). However, not all patients with OSAS manifest EDS. The aim of this study was to assess whether differential circulatory levels of inflammatory mediators would account for differences in somnolence among patients with OSAS. Patients were prospectively recruited from referral patient cohort to the university hospital sleep center. A total of 50 consecutive patients with OSAS undergoing overnight polysomnography with or without EDS and 20 controls were evaluated. EDS was assessed using the Epworth sleepiness scale (ESS) and the multiple sleep latency test after overnight polysomnography. EDS was defined when the ESS was >10 and the mean sleep latency <10 min. Fasting blood was drawn in the morning after polysomnography. Circulating levels of tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), intercellular adhesion molecule 1 (ICAM-1), 8-isoprostaglandin F2α (8-iso-PGF2α), and P-selectin were measured with commercially available high sensitivity kits. Although patients with OSAS have elevated levels of ICAM-1, IL-6, and TNFα, there were no statistically significant differences in any of the inflammatory mediators between patients with EDS and without EDS. Emergence of EDS in the context of OSA does not appear to result from the selective increase of any particular somnogenic substance, i.e., TNFα, IL-6, ICAM-1, 8-iso-PGF2α, and P-selectin in the context of sleep-disordered breathing.

Keywords

Excessive daytime sleepiness Sleep disordered breathing Inflammation Oxidant stress 

References

  1. 1.
    Douglas NJ, Polo O (1994) Pathogenesis of obstructive sleep apnoea/hypopnoea syndrome (Review) (34 refs). Lancet 344(8923):653–655PubMedCrossRefGoogle Scholar
  2. 2.
    Young T, Palta M, Dempsey J et al (1993) The occurrence of sleep-disordered breathing among middle-aged adults (see comment). N Engl J Med 328(17):1230–1235PubMedCrossRefGoogle Scholar
  3. 3.
    Carrera M, Barbe F, Sauleda J et al (1999) Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with continuous positive airway pressure. Am J Respir Crit Care Med 159(6):1960–1966PubMedGoogle Scholar
  4. 4.
    Young TB (2004) Epidemiology of daytime sleepiness: definitions, symptomatology, and prevalence. J Clin Psychiatry 65(Suppl 16):12–16PubMedGoogle Scholar
  5. 5.
    Findley LJ, Barth JT, Powers DC et al (1986) Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest 90(5):686–690PubMedGoogle Scholar
  6. 6.
    Aldrich MS (1989) Automobile accidents in patients with sleep disorders. Sleep 12(6):487–494PubMedGoogle Scholar
  7. 7.
    Findley LJ (1990) Automobile driving in sleep apnea. Prog Clin Biol Res 345:337–343PubMedGoogle Scholar
  8. 8.
    Beutler LE, Ware JC, Karacan I et al (1981) Differentiating psychological characteristics of patients with sleep apnea and narcolepsy. Sleep 4(1):39–47PubMedGoogle Scholar
  9. 9.
    Vgontzas AN, Bixler EO, Chrousos GP (2003) Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J Intern Med 254(1):32–44PubMedCrossRefGoogle Scholar
  10. 10.
    ICSD—Diagnostic Classification Committee, Thorpy MJ C, American sleep disorders Association (1990) International classification of sleep disorders: diagnostic and coding manual. Rochester, MinnesotaGoogle Scholar
  11. 11.
    Newman AB, Spiekerman CF, Enright P et al (2000) Daytime sleepiness predicts mortality and cardiovascular disease in older adults. The Cardiovascular Health Study Research Group. J Am Geriatr Soc 48(2):115–123PubMedGoogle Scholar
  12. 12.
    Barbe F, Mayoralas LR, Duran J et al (2001) Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med 134(11):1015–1023PubMedGoogle Scholar
  13. 13.
    Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic–pituitary–adrenal axis in humans. J Clin Endocrinol Metab 77(6):1690–1694PubMedCrossRefGoogle Scholar
  14. 14.
    Papanicolaou DA, Tsigos C, Oldfield EH et al (1996) Acute glucocorticoid deficiency is associated with plasma elevations of interleukin-6: does the latter participate in the symptomatology of the steroid withdrawal syndrome and adrenal insufficiency? J Clin Endocrinol Metab 81(6):2303–2306PubMedCrossRefGoogle Scholar
  15. 15.
    Entzian P, Linnemann K, Schlaak M et al (1996) Obstructive sleep apnea syndrome and circadian rhythms of hormones and cytokines. Am J Respir Crit Care Med 153(3):1080–1086PubMedGoogle Scholar
  16. 16.
    Vgontzas AN, Papanicolaou DA, Bixler EO et al (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82(5):1313–1316PubMedCrossRefGoogle Scholar
  17. 17.
    Vgontzas AN, Papanicolaou DA, Bixler EO et al (2000) Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85(3):1151–1158PubMedCrossRefGoogle Scholar
  18. 18.
    Vgontzas AN, Zoumakis E, Lin HM et al (2004) Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist. J Clin Endocrinol Metab 89(9):4409–4413PubMedCrossRefGoogle Scholar
  19. 19.
    Yudkin JS, Kumari M, Humphries SE et al (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2):209–214PubMedCrossRefGoogle Scholar
  20. 20.
    Marin JM, Carrizo SJ, Vicente E et al (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053PubMedGoogle Scholar
  21. 21.
    Nieto FJ, Young TB, Lind BK et al (2000) Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 283(14):1829–1836PubMedCrossRefGoogle Scholar
  22. 22.
    Peker Y, Hedner J, Norum J et al (2002) Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med 166(2):159–165PubMedCrossRefGoogle Scholar
  23. 23.
    Peppard PE, Young T, Palta M et al (2000) Prospective study of the association between sleep-disordered breathing and hypertension (see comment). N Engl J Med 342(19):1378–1384PubMedCrossRefGoogle Scholar
  24. 24.
    Shahar E, Whitney CW, Redline S et al (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study (see comment). Am J Respir Crit Care Med 163(1):19–25PubMedGoogle Scholar
  25. 25.
    Dean RT, Wilcox I (1993) Possible atherogenic effects of hypoxia during obstructive sleep apnea. Sleep 16(8 Suppl):S15–S21PubMedGoogle Scholar
  26. 26.
    Hedner JA, WISCE (1994) Speculations on the interaction between vascular disease and obstructive sleep apnea. In: Dekker M (ed) Sleep and breathing. INC, New YorkGoogle Scholar
  27. 27.
    Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder (comment) (Review) (130 refs). Sleep Med Rev 7(1):35–51PubMedCrossRefGoogle Scholar
  28. 28.
    Schulz R, Mahmoudi S, Hattar K et al (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162(2 Pt 1):566–570PubMedGoogle Scholar
  29. 29.
    Barcelo A, Miralles C, Barbe F et al (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16(4):644–647PubMedCrossRefGoogle Scholar
  30. 30.
    Awad JA, Morrow JD, Takahashi K et al (1993) Identification of non-cyclooxygenase-derived prostanoid (F2-isoprostane) metabolites in human urine and plasma. J Biol Chem 268(6):4161–4169PubMedGoogle Scholar
  31. 31.
    Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28(4):505–513PubMedCrossRefGoogle Scholar
  32. 32.
    Schwedhelm E, Maas R, Troost R et al (2003) Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. Clin Pharmacokinet 42(5):437–459PubMedCrossRefGoogle Scholar
  33. 33.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695PubMedCrossRefGoogle Scholar
  34. 34.
    Simonini A, Moscucci M, Muller DW et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101(13):1519–1526PubMedGoogle Scholar
  35. 35.
    Haught WH, Mansour M, Rothlein R et al (1996) Alterations in circulating intercellular adhesion molecule-1 and L-selectin: further evidence for chronic inflammation in ischemic heart disease. Am Heart J 132(1 Pt 1):1–8PubMedGoogle Scholar
  36. 36.
    Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809PubMedCrossRefGoogle Scholar
  37. 37.
    Pober JS, Bevilacqua MP, Mendrick DL et al (1986) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136(5):1680–1687PubMedGoogle Scholar
  38. 38.
    Chin K, Nakamura T, Shimizu K et al (2000) Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome. Am J Med 109(7):562–567PubMedCrossRefGoogle Scholar
  39. 39.
    El Solh AA, Mador MJ, Sikka P et al (2002) Adhesion molecules in patients with coronary artery disease and moderate-to-severe obstructive sleep apnea. Chest 121(5):1541–1547PubMedCrossRefGoogle Scholar
  40. 40.
    Blankenberg S, Barbaux S, Tiret L (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170(2):191–203PubMedCrossRefGoogle Scholar
  41. 41.
    Blann AD, McCollum CN (1998) Increased soluble P-selectin in peripheral artery disease: a new marker for the progression of atherosclerosis. Thromb Haemost 80(6):1031–1032PubMedGoogle Scholar
  42. 42.
    Ridker PM, Buring JE, Rifai N (2001) Soluble P-selectin and the risk of future cardiovascular events. Circulation 103(4):491–495PubMedGoogle Scholar
  43. 43.
    Carskadon MA, Dement WC, Mitler MM et al (1986) Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 9(4):519–524PubMedGoogle Scholar
  44. 44.
    Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545PubMedGoogle Scholar
  45. 45.
    Benbadis SR, Mascha E, Perry MC et al (1999) Association between the Epworth sleepiness scale and the multiple sleep latency test in a clinical population. Ann Intern Med 130(4 Pt 1):289–292PubMedGoogle Scholar
  46. 46.
    Ohga E, Nagase T, Tomita T et al (1999) Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J Appl Physiol 87(1):10–14PubMedGoogle Scholar
  47. 47.
    Haddy N, Sass C, Droesch S et al (2003) IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 170(2):277–283PubMedCrossRefGoogle Scholar
  48. 48.
    Rothlein R, Mainolfi EA, Czajkowski M et al (1991) A form of circulating ICAM-1 in human serum. J Immunol 147(11):3788–3793PubMedGoogle Scholar
  49. 49.
    Morisaki N, Saito I, Tamura K et al (1997) New indices of ischemic heart disease and aging: studies on the serum levels of soluble intercellular adhesion molecule-1 (ICAM-1) and soluble vascular cell adhesion molecule-1 (VCAM-1) in patients with hypercholesterolemia and ischemic heart disease. Atherosclerosis 131(1):43–48PubMedCrossRefGoogle Scholar
  50. 50.
    Ridker PM, Hennekens CH, Roitman-Johnson B et al (1998) Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 351(9096):88–92PubMedCrossRefGoogle Scholar
  51. 51.
    Zund G, Uezono S, Stahl GL et al (1997) Hypoxia enhances induction of endothelial ICAM-1: role for metabolic acidosis and proteasomes. Am J Physiol 273(5 Pt 1):C1571–C1580PubMedGoogle Scholar
  52. 52.
    Blann AD, Steele C, McCollum CN (1997) The influence of smoking on soluble adhesion molecules and endothelial cell markers. Thromb Res 85(5):433–438PubMedCrossRefGoogle Scholar
  53. 53.
    Ponthieux A, Herbeth B, Droesch S et al (2004) Biological determinants of serum ICAM-1, E-selectin, P-selectin and L-selectin levels in healthy subjects: the Stanislas study. Atherosclerosis 172(2):299–308PubMedCrossRefGoogle Scholar
  54. 54.
    Bokinsky G, Miller M, Ault K et al (1995) Spontaneous platelet activation and aggregation during obstructive sleep apnea and its response to therapy with nasal continuous positive airway pressure. A preliminary investigation. Chest 108(3):625–630PubMedGoogle Scholar
  55. 55.
    Eisensehr I, Ehrenberg BL, Noachtar S et al (1998) Platelet activation, epinephrine, and blood pressure in obstructive sleep apnea syndrome. Neurology 51(1):188–195PubMedGoogle Scholar
  56. 56.
    Geiser T, Buck F, Meyer BJ et al (2002) In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome. Respiration 69(3):229–234PubMedCrossRefGoogle Scholar
  57. 57.
    Hui DS, Ko FW, Fok JP et al (2004) The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome. Chest 125(5):1768–1775PubMedCrossRefGoogle Scholar
  58. 58.
    Sanner BM, Konermann M, Tepel M et al (2000) Platelet function in patients with obstructive sleep apnoea syndrome. Eur Respir J 16(4):648–652PubMedCrossRefGoogle Scholar
  59. 59.
    von Kanel R, Dimsdale JE (2003) Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease. Chest 124(5):1956–1967CrossRefGoogle Scholar
  60. 60.
    Robinson GV, Pepperell JC, Segal HC et al (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59(9):777–782PubMedCrossRefGoogle Scholar
  61. 61.
    Olson LJ, Olson EJ, Somers VK (2004) Obstructive sleep apnea and platelet activation: another potential link between sleep-disordered breathing and cardiovascular disease. Chest 126(2):339–341PubMedCrossRefGoogle Scholar
  62. 62.
    Papanicolaou DA, Wilder RL, Manolagas SC et al (1998) The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 128(2):127–137PubMedGoogle Scholar
  63. 63.
    Biasucci LM, Vitelli A, Liuzzo G et al (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94(5):874–877PubMedGoogle Scholar
  64. 64.
    Carpagnano GE, Kharitonov SA, Resta O et al (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122(4):1162–1167PubMedCrossRefGoogle Scholar
  65. 65.
    Yokoe T, Minoguchi K, Matsuo H et al (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134PubMedCrossRefGoogle Scholar
  66. 66.
    Inoue Ki, Takano H, Yoshikawa T et al (2003) Interleukin-6, Obstructive Sleep Apnea, and Obesity. Chest 124(4):1621–162aGoogle Scholar
  67. 67.
    Teramoto S, Yamamoto H, Ouchi Y (2003) Increased C-reactive protein and increased plasma interleukin-6 may synergistically affect the progression of coronary atherosclerosis in obstructive sleep apnea syndrome. Circulation 107(5):E40PubMedCrossRefGoogle Scholar
  68. 68.
    Tauman R, Ivanenko A, O’Brien LM et al (2004) Plasma C-reactive protein levels among children with sleep-disordered breathing. Pediatrics 113(6):e564–e569PubMedCrossRefGoogle Scholar
  69. 69.
    Bauer J, Hohagen F, Ebert T et al (1994) Interleukin-6 serum levels in healthy persons correspond to the sleep-wake cycle. Clin Investig 72(4):315PubMedCrossRefGoogle Scholar
  70. 70.
    De Simoni MG, De Luigi A, Gemma L et al (1993) Modulation of systemic interleukin-6 induction by central interleukin-1. Am J Physiol Regul Integr Comp Physiol 265(4):R739–R742Google Scholar
  71. 71.
    Opp MR (2002) Cytokines and sleep promotion: a potential mechanism for disorders of excessive daytime sleepiness. In: Pack AI (ed) Sleep apnea: pathogenesis, diagnosis, and treatment. Dekker, New York, pp 327–352Google Scholar
  72. 72.
    Vgontzas AN, Papanicolaou DA, Bixler EO et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84(8):2603–2607PubMedCrossRefGoogle Scholar
  73. 73.
    Vgontzas AN, Zoumakis E, Bixler EO et al (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89(5):2119–2126PubMedCrossRefGoogle Scholar
  74. 74.
    Vgontzas AN, Papanicolaou DA, Bixler EO et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84(8):2603–2607PubMedCrossRefGoogle Scholar
  75. 75.
    Fang J, Wang Y, Krueger JM (1997) Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J Neurosci 17(15):5949–5955PubMedGoogle Scholar
  76. 76.
    Takahashi S, Kapas L, Krueger JM (1996) A tumor necrosis factor (TNF) receptor fragment attenuates TNF-alpha- and muramyl dipeptide-induced sleep and fever in rabbits. J Sleep Res 5(2):106–114PubMedCrossRefGoogle Scholar
  77. 77.
    Minoguchi K, Tazaki T, Yokoe T et al (2004) Elevated production of tumor necrosis factor-α by monocytes in patients with obstructive sleep apnea syndrome. Chest 126(5):1473–1479PubMedCrossRefGoogle Scholar
  78. 78.
    Row BW, Liu R, Xu W et al (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167(11):1548–1553PubMedCrossRefGoogle Scholar
  79. 79.
    Zhan G, Serrano F, Fenik P et al (2005) NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 172(7):921–929PubMedCrossRefGoogle Scholar
  80. 80.
    Yamauchi M, Nakano H, Maekawa J et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679PubMedCrossRefGoogle Scholar
  81. 81.
    Morrow JD, Hill KE, Burk RF et al (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87(23):9383–9387PubMedCrossRefGoogle Scholar
  82. 82.
    Janssen LJ (2000) Isoprostanes: generation, pharmacology, and roles in free-radical-mediated effects in the lung. Pulm Pharmacol Ther 13(4):149–155PubMedCrossRefGoogle Scholar
  83. 83.
    Dworski D, Jackson L, Roberts L et al (2001) Assessment of oxidant stress in allergic asthma by measurement of the major urinary metabolite of F2-isoprostane, 15-F2t-IsoP (8-iso-PGF2). Clin Exp Allergy 31(3):387PubMedCrossRefGoogle Scholar
  84. 84.
    Pratico D, Basili S, Vieri M et al (1998) Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-III, an index of oxidant stress. Am J Respir Crit Care Med 158(6):1709–1714PubMedGoogle Scholar
  85. 85.
    Montuschi P, Ciabattoni G, Paredi P et al (1998) 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med 158(5 Pt 1):1524–1527PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mónica de la Peña Bravo
    • 1
  • Laura D. Serpero
    • 2
  • Antonia Barceló
    • 3
  • Ferran Barbé
    • 4
  • Alvar Agustí
    • 1
  • David Gozal
    • 2
    • 5
  1. 1.Hospital Universitario Son Dureta, Servicio de NeumologíaPalma de MallorcaSpain
  2. 2.Department of Pediatrics, Division of Pediatric Sleep MedicineKosair Children’s Hospital Research Institute, University of LouisvilleLouisvilleUSA
  3. 3.Hospital Universitario Son Dureta, Servicio de Análisis ClínicosPalma de MallorcaSpain
  4. 4.Servei de PneumologíaHospital Univ Arnau de VilanovaLleidaSpain
  5. 5.KCHRILouisvilleUSA

Personalised recommendations