Advertisement

Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody

  • Shubhanchi Nigam
  • Lauren McCarl
  • Rajeev Kumar
  • Robert S. Edinger
  • Brenda F. Kurland
  • Carolyn J. Anderson
  • Ashok Panigrahy
  • Gary KohanbashEmail author
  • W. Barry EdwardsEmail author
Research Article

Abstract

Purpose

Glioblastoma is a lethal brain tumor, heavily infiltrated by tumor-associated myeloid cells (TAMCs). TAMCs are emerging as a promising therapeutic target as they suppress anti-tumor immune responses and promote tumor cell growth. Quantifying TAMCs using non-invasive immunoPET could facilitate patient stratification for TAMC-targeted treatments and monitoring of treatment efficacy. As TAMCs uniformly express the cell surface marker, integrin CD11b, we evaluated a Zr-89 labeled anti-CD11b antibody for non-invasive imaging of TAMCs in a syngeneic orthotopic mouse glioma model.

Procedures

A human/mouse cross-reactive anti-CD11b antibody (clone M1/70) was conjugated to a DFO chelator and radiolabeled with Zr-89. PET/CT and biodistribution with or without a blocking dose of anti-CD11b Ab were performed 72 h post-injection (p.i.) of [89Zr]anti-CD11b Ab in mice bearing established orthotopic syngeneic GL261 gliomas and in non tumor-bearing mice. Flow cytometry and immunohistochemistry of dissected GL261 tumors were conducted to confirm the presence of CD11b+ TAMCs.

Results

Significant uptake of [89Zr]anti-CD11b Ab was detected at the tumor site (SUVmean = 2.60 ± 0.24) compared with the contralateral hemisphere (SUVmean = 0.6 ± 0.11). Blocking with a 10-fold lower specific activity of [89Zr]anti-CD11b Ab markedly reduced the SUV in the right brain (SUVmean = 0.11 ± 0.06), demonstrating specificity. Spleen and lymph nodes (myeloid cell rich organs) also showed high uptake of the tracer, and biodistribution analysis correlated with the imaging results. CD11b expression within the tumor was validated using flow cytometry and immunohistochemistry, which showed high CD11b expression primarily in the tumoral hemisphere compared with the contralateral hemisphere with very minimal accumulation in non tumor-bearing brain.

Conclusion

These data establish that [89Zr]anti-CD11b Ab immunoPET targets CD11b+ cells (TAMCs) with high specificity in a mouse model of GBM, demonstrating the potential for non-invasive quantification of tumor-infiltrating CD11b+ immune cells during disease progression and immunotherapy in patients with GBM.

Key words

Positron-emission tomography (PET) Glioblastoma (GBM) Tumor-associated myeloid cells (TAMCs) Myeloid-derived suppressor cells (MDSCs) Tumor-associated macrophages (TAMs) 

Notes

Acknowledgments

We thank Kathryn Day and Joseph Latoche for assisting with preclinical PET/CT imaging and UPMC Hillman Cancer Center Histology Core for providing IHC assistance.

Funding Information

This work was funded by National Institute of Health grant R21 EB026675 (WBE, GK), UPMC Hillman Cancer Center Animal Facility, In Vivo Imaging Facility, Biostatistics Facility (NCI P30 CA047904), and the St. Baldrick’s Foundation; the Henry Cermak Fund for Pediatric Cancer Research, a St. Baldrick’s Hero Fund.

Compliance with Ethical Standards

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Conflict of Interest

Dr. Anderson has a research grant from Lumiphore and is on their scientific advisory board. The authors have no other conflicts of interest to report.

References

  1. 1.
    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology 19:v1–v88CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Antonios JP, Soto H, Everson RG et al (2017) Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-Oncology 19:796–807PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gabrusiewicz K, Rodriguez B, Wei J et al (2016) Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI insight 1.  https://doi.org/10.1172/jci.insight.85841
  4. 4.
    Kennedy BC, Showers CR, Anderson DE et al (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013.  https://doi.org/10.1155/2013/486912
  5. 5.
    Kohanbash G, Okada H (2012) Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol Investig 41:658–679CrossRefGoogle Scholar
  6. 6.
    Lapa C, Linsenmann T, Lückerath K, Samnick S, Herrmann K, Stoffer C, Ernestus RI, Buck AK, Löhr M, Monoranu CM (2015) Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy? PLoS One 10:e0122269–e0122269CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR, Okada H (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 71:2664–2674CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sorensen MD, Dahlrot RH, Boldt HB et al (2018) Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol 44:185–206CrossRefPubMedGoogle Scholar
  10. 10.
    Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR, Okada H (2013) GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res 73:6413–6423CrossRefPubMedGoogle Scholar
  11. 11.
    Raychaudhuri B, Rayman P, Huang P, Grabowski M, Hambardzumyan D, Finke JH, Vogelbaum MA (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neuro-Oncol 122:293–301CrossRefGoogle Scholar
  12. 12.
    Okada H, Kohanbash G, Zhu X, Kastenhuber ER, Hoji A, Ueda R, Fujita M (2009) Immunotherapeutic approaches for glioma. Crit Rev Immunol 29:1–42CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD, Rayman P, Flavahan WA, Hale JS, Stoltz K, Sinyuk M, Wu Q, Jarrar A, Kim SH, Fox PL, Nakano I, Rich JN, Ransohoff RM, Finke J, Kristensen BW, Vogelbaum MA, Lathia JD (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34:2026–2039CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63:247–257CrossRefPubMedGoogle Scholar
  15. 15.
    Cantero D, Rodriguez de Lope A, Moreno de la Presa R et al (2018) Molecular study of long-term survivors of glioblastoma by gene-targeted next-generation sequencing. J Neuropathol Exp Neurol 77:710–716CrossRefPubMedGoogle Scholar
  16. 16.
    Erhart F, Buchroithner J, Reitermaier R, Fischhuber K, Klingenbrunner S, Sloma I, Hibsh D, Kozol R, Efroni S, Ricken G, Wöhrer A, Haberler C, Hainfellner J, Krumpl G, Felzmann T, Dohnal AM, Marosi C, Visus C (2018) Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol Commun 6:135CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Suk K (2012) Proteomic analysis of glioma chemoresistance. Curr Neuropharmacol 10:72–79CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szopa W, Burley TA, Kramer-Marek G, Kaspera W (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:8013575CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thust SC, van den Bent MJ, Smits M (2018) Pseudoprogression of brain tumors. J Magn Reson Imaging 48:571–589CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shi P, Zhong J, Hong J, Huang R, Wang K, Chen Y (2016) Automated Ki-67 quantification of immunohistochemical staining image of human nasopharyngeal carcinoma xenografts. Sci Rep 6:32127CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  22. 22.
    Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O (2018) Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol 9:170–170CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rajappa P, Cobb WS, Vartanian E, Huang Y, Daly L, Hoffman C, Zhang J, Shen B, Yanowitch R, Garg K, Cisse B, Haddock S, Huse J, Pisapia DJ, Chan TA, Lyden DC, Bromberg JF, Greenfield JP (2017) Malignant astrocytic tumor progression potentiated by JAK-mediated recruitment of myeloid cells. Clin Cancer Res 23:3109–3119CrossRefPubMedGoogle Scholar
  24. 24.
    Garzon-Muvdi T, Theodros D, Luksik AS et al (2018) Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget 9:20681–20697CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gieryng A, Pszczolkowska D, Bocian K, Dabrowski M, Rajan WD, Kloss M, Mieczkowski J, Kaminska B (2017) Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci Rep 7:17556CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Butowski N, Colman H, De Groot JF et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology 18:557–564CrossRefPubMedGoogle Scholar
  27. 27.
    Genard G, Lucas S, Michiels C (2017) Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol 8:828CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Oh T, Fakurnejad S, Sayegh ET, Clark AJ, Ivan ME, Sun MZ, Safaee M, Bloch O, James CD, Parsa AT (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12:107CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Genoud V, Marinari E, Nikolaev SI, Castle JC, Bukur V, Dietrich PY, Okada H, Walker PR (2018) Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 7:e1501137CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, Jones KL, Conway AS, Liao X, Zhou J, Wen PY, van den Abbeele AD, Hodi FS, Qin L, Kohl NE, Sharpe AH, Dranoff G, Freeman GJ (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135CrossRefPubMedGoogle Scholar
  33. 33.
    Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, Chheda ZS, Downey KM, Watchmaker PB, Beppler C, Warta R, Amankulor NA, Herold-Mende C, Costello JF, Okada H (2017) Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 127:1425–1437CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, McDonald HA, Harper J, Lonning S, Okada H (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leten C, Struys T, Dresselaers T, Himmelreich U (2014) In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models. J Neuro-Oncol 119:297–306CrossRefGoogle Scholar
  36. 36.
    Miyauchi JT, Chen D, Choi M et al (2016) Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 7:9801CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jeong H-K, Ji K, Min K, Joe E-H (2013) Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol 22:59–67CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, Cragnolini J, Swee LK, Victora GD, Weissleder R, Ploegh HL (2015) Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A 112:6146–6151CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of PittsburghPittsburghUSA
  2. 2.Department of Neurological SurgeryUniversity of PittsburghPittsburghUSA
  3. 3.Department of BiostatisticsUniversity of PittsburghPittsburghUSA
  4. 4.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  5. 5.Department of MedicineUniversity of PittsburghPittsburghUSA
  6. 6.Department of Pharmacology & Chemical BiologyUniversity of PittsburghPittsburghUSA
  7. 7.Department of ImmunologyUniversity of PittsburghPittsburghUSA

Personalised recommendations