Skip to main content
Log in

Targeting VPAC1 Receptors for Imaging Glioblastoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Scintigraphic imaging of malignant glioblastoma (MG) continues to be challenging. We hypothesized that VPAC1 cell surface receptors can be targeted for positron emission tomography (PET) imaging of orthotopically implanted MG in a mouse model, using a VPAC1-specific peptide [64Cu]TP3805.

Procedures

The expression of VPAC1 in mouse GL261 and human U87 glioma cell lines was determined by western blot. The ability of [64Cu]TP3805 to bind to GL261 and U87 cells was studied by cell-binding. Receptor-blocking studies were performed to validate receptor specificity. GL261 tumors were implanted orthotopically in syngeneic T-bet knockout C57BL/6 mouse brain (N = 15) and allowed to grow for 2–3 weeks. Mice were injected i.v., first with ~ 150 μCi of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) then 24 h later with ~ 200 μCi of [64Cu]TP3805. In another set of tumor-bearing mice, (N = 5), ionic [64Cu]Cl2 was injected as a control. Mice were imaged at a 2-h post-injection using an Inveon micro-PET/CT, sacrificed and % ID/g of [64Cu]TP3805 and [64Cu]Cl2 were calculated in a tumor, normal brain, and other tissues. For histologic tissue examination, 3-μm thick sections of the tumors and normal brain were prepared, digital autoradiography (DAR) was performed, and then the sections were H&E stained for histologic examination.

Results

Western blots showed a strong signal for VPAC1 on both cell lines. [64Cu]TP3805 cell-binding was 87 ± 1.5 %. Receptor-blocking reduced cell-binding to 24.3 ± 1.5 % (P < 0.01). PET imaging revealed remarkable accumulation of [64Cu]TP3805 in GL261 MG with a negligible background in the normal brain, as compared to [18F]FDG. Micro-PET/CT image analyses and tissue distribution showed that the brain tumor uptake for [64Cu]TP3805 was 8.2 ± 1.7 % ID/g and for [64Cu]Cl2 2.1 ± 0.5 % ID/g as compared to 1.0 ± 0.3 % ID/g and 1.4 ± 0.3 % ID/g for normal mouse brains, respectively. The high tumor/normal brain ratio for [64Cu]TP3805 (8.1 ± 1.1) allowed tumors to be visualized unequivocally. Histology and [64Cu]TP3805 DAR differentiated malignant tumors from healthy brain and confirmed PET findings.

Conclusion

Targeting VPAC1 receptors using [64Cu]TP3805 for PET imaging of MG is a promising novel approach and calls for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  3. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger G, Weller M, Schackert G, for the German Glioma Network (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  PubMed  Google Scholar 

  4. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  CAS  PubMed  Google Scholar 

  5. Yang I, Aghi MK (2009) New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6:648–657

    Article  PubMed  Google Scholar 

  6. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PCM (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134

    Article  CAS  PubMed  Google Scholar 

  7. Nikaki A, Angelidis G, Efthimiadou R, Tsougos I, Valotassiou V, Fountas K, Prasopoulos V, Georgoulias P (2017) 18F-fluorothymidine PET imaging in gliomas: an update. Ann Nucl Med 31:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. la Fougere C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncology 13:806–819

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fu Y, Ong LC, Ranganath SH, Zheng L, Kee I, Zhan W, Yu S, Chow PKH, Wang CH (2016) A dual tracer 18F-FCH/18F-FDG PET imaging of an orthotopic brain tumor xenograft model. PLoS One 11:e0148123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615–626

    Article  PubMed  Google Scholar 

  11. Strauss LG (1996) Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415

    Article  CAS  PubMed  Google Scholar 

  12. Gallagher BM, Fowler JS, Gutterson NI, MacGregor R, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F]2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:1154–1161

    CAS  PubMed  Google Scholar 

  13. Juhasz C, Dwivedi S, Kamson DO et al (2014) Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 13:7290.2014.00015

    Article  CAS  Google Scholar 

  14. Szopa W, Burley TA, Kramer-Marek G, Kaspera W (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:8013575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zia H, Hida T, Jakowlew S, Birrer M, Gozes Y, Reubi JC, Fridkin M, Gozes I, Moody TW (1996) Breast cancer growth is inhibited by vasoactive intestinal peptide (VIP) hybrid, a synthetic VIP receptor antagonist. Cancer Res 56:3486–3489

    CAS  PubMed  Google Scholar 

  16. Leyton J, Gozes Y, Pisegna J, Coy D, Purdom S, Casibang M, Zia F, Moody TW (1999) PACAP(6-38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Res Treat 56:177–186

    Article  CAS  PubMed  Google Scholar 

  17. Moody TW, Gozes I (2007) Vasoactive intestinal peptide receptors: a molecular target in breast and lung cancer. Cur Pharm Des 13:1099–1104

    Article  CAS  Google Scholar 

  18. Jaworski DM (2000) Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and the PACAP-selective receptor in cultured rat astrocytes, human brain tumors, and in response to acute intracranial injury. Cell Tissue Res 300:219–230

    Article  CAS  PubMed  Google Scholar 

  19. Reubi JC (1995) Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 36:1825–1835

    CAS  PubMed  Google Scholar 

  20. Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann N Y Acad Sci 921:1–25

    Article  CAS  PubMed  Google Scholar 

  21. Reubi JC, Laderach U, Waser B et al (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res 60:3105–3112

    CAS  PubMed  Google Scholar 

  22. Zhang K, Aruva MR, Shanthly N, Cardi CA, Patel CA, Rattan S, Cesarone G, Wickstrom E, Thakur ML (2007) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) receptor specific peptide analogues for PET imaging of breast cancer: in vitro/in vivo evaluation. Regul Pept 144:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang K, Aruva MR, Shanthly N, Cardi CA, Rattan S, Patel C, Kim C, McCue P, Wickstrom E, Thakur ML (2008) PET imaging of VPAC1 expression in experimental and spontaneous prostate cancer. J Nucl Med 49:112–121

    Article  CAS  PubMed  Google Scholar 

  24. Truong H, Gomella LG, Thakur ML, Trabulsi EJ (2018) VPAC1-targeted PET/CT scan: improved molecular imaging for the diagnosis of prostate cancer using a novel cell surface antigen. World J Urol 36:719–726

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thakur ML, Zhang K, Berger A, Cavanaugh B, Kim S, Channappa C, Frangos AJ, Wickstrom E, Intenzo CM (2013) VPAC1 receptors for imaging breast cancer: a feasibility study. J Nucl Med 54:1019–1025

    Article  CAS  PubMed  Google Scholar 

  26. Tripathi S, Trabulsi EJ, Gomella L, Kim S, McCue P, Intenzo C, Birbe R, Gandhe A, Kumar P, Thakur M (2016) VPAC1 targeted [64Cu]-TP3805 positron emission tomography imaging of prostate cancer: preliminary evaluation in man. Urology 88:111–118

    Article  PubMed  Google Scholar 

  27. Tripathi SK, Kumar P, Trabulsi EJ, Kim S, McCue PA, Intenzo C, Berger A, Gomella L, Thakur ML (2017) VPAC1 Targeted [64Cu]-TP3805 kit preparation and its evaluation. Nucl Med Biol 51:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thakur ML, Aruva MR, Gariepy J, Acton P, Rattan S, Prasad S, Wickstrom E, Alavi A (2004) PET imaging of oncogene overexpression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J Nucl Med 45:1381–1389

    CAS  PubMed  Google Scholar 

  29. Tripathi SK, Kumar P, Jin YY et al (2018) VPAC1 biomarker for imaging triple negative breast cancer [abstract]. J Nucl Med 59:1282P

    Google Scholar 

  30. Allen M, Bjerke M, Edlund H et al (2016) Origin of the U87MG glioma cell line: good news and bad news. Sci Tran Med 8:354re353

    Google Scholar 

  31. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553

    Article  CAS  PubMed  Google Scholar 

  32. Jacobs VL, Valdes PA, Hickey WF, De Leo JA (2011) Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro 3:e00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Awde AR, Boisgard R, Theze B, Dubois A, Zheng J, Dolle F, Jacobs AH, Tavitian B, Winkeler A (2013) The translocator protein radioligand [18F]-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med 54:2125–2131

    Article  CAS  PubMed  Google Scholar 

  34. Association ABT Brain Tumor Statistics. http://www.abta.org/about-us/news/brain-tumor-statistics/ (accessed 4/4/18)

  35. Huang RY, Neagu MR, Reardon DA, Wen PY (2015) Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herholz K (2018) PET and MRI in gliomas: progress and perspective. Clin Transl Imaging 6:73–75

    Article  Google Scholar 

  37. Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA (2009) Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther 85:531–534

    Article  CAS  PubMed  Google Scholar 

  38. Blanco VM, Chu Z, LaSance K, Gray BD, Pak KY, Rider T, Greis KD, Qi X (2016) Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles. Oncotarget 7:32866–32875

    PubMed  PubMed Central  Google Scholar 

  39. Iagaru A, Mosci C, Mittra E, Zaharchuk G, Fischbein N, Harsh G, Li G, Nagpal S, Recht L, Gambhir SS (2015) Glioblastoma multiforme recurrence: an exploratory study of 18F FPPRGD2 PET/CT. Radiology 277:497–506

    Article  PubMed  Google Scholar 

  40. Kunikowska J, Bartosz K, Leszek K (2018) Glioblastoma multiforme: another potential application for 68Ga-PSMA PET/CT as a guide for targeted therapy. Eur J Nucl Med Mol Imaging 45:886–887

    Article  PubMed  Google Scholar 

  41. Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O (2018) Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physi 9:170

    Article  Google Scholar 

  42. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38:1716–1725

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, Swanson KR, Kaufmann TJ, Brown PD, Agar NYR, Galanis E, Buckner JC, Elmquist WF (2018) Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-oncology 20:184–191

    Article  CAS  PubMed  Google Scholar 

  44. Ferrari C, Asabella AN, Villano C et al (2015) Copper-64 dichloride as theranostic agent for glioblastoma multiforme: a preclinical study. Biomed Res Int 2015:129764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valdehita A, Bajo AM, Fernandez-Martinez AB et al (2010) Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides 31:2035–2045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical support by Paul A. Jicman and Kim Lee are gratefully acknowledged.

Funding

The research, in part, was supported by NIH/NCI RO1CA157372 (MLT), NIH/NCI 1S10OD012406 (MLT), and NIH/NCI S10RR23709 (MLT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew L. Thakur.

Ethics declarations

Conflict of Interest

MLT holds a granted patent on [64Cu]TP3805. Through TJU, the patent is licensed to NuView Pharmaceuticals. Other authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.K., Kean, R., Bongiorno, E. et al. Targeting VPAC1 Receptors for Imaging Glioblastoma. Mol Imaging Biol 22, 293–302 (2020). https://doi.org/10.1007/s11307-019-01388-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01388-5

Key words

Navigation