GABAA Receptors in the Mongolian Gerbil: a PET Study Using [18F]Flumazenil to Determine Receptor Binding in Young and Old Animals

  • M. KesslerEmail author
  • M. Mamach
  • R. Beutelmann
  • M. Lukacevic
  • S. Eilert
  • P. Bascuñana
  • A. Fasel
  • F. M. Bengel
  • J. P. Bankstahl
  • T. L. Ross
  • G. M. Klump
  • G. Berding
Research Article



Plastic changes in the central auditory system involving the GABAergic system accompany age-related hearing loss. Such processes can be investigated with positron emission tomography (PET) imaging using [18F]flumazenil ([18F]FMZ). Here, [18F]FMZ PET-based modeling approaches allow a simple and reliable quantification of GABAA receptor binding capacity revealing regional differences and age-related changes.


Sixty-minute list-mode PET acquisitions were performed in 9 young (range 5–6 months) and 11 old (range 39–42 months) gerbils, starting simultaneously with the injection of [18F]FMZ via femoral vein. Non-displaceable binding potentials (BPnd) with pons as reference region were calculated for auditory cortex (AC), inferior colliculus (IC), medial geniculate body (MGB), somatosensory cortex (SC), and cerebellum (CB) using (i) a two-tissue compartment model (2TCM), (ii) the Logan plot with image-derived blood-input (Logan (BI)), (iii) a simplified reference tissue model (SRTM), and (iv) the Logan reference model (Logan (RT)). Statistical parametric mapping analysis (SPM) comparing young and old gerbils was performed using 3D parametric images for BPnd based on SRTM. Results were verified with in vitro autoradiography from five additional young gerbils. Model assessment included the Akaike information criterion (AIC). Hearing was evaluated using auditory brainstem responses.


BPnd differed significantly between models (p < 0.0005), showing the smallest mean difference between 2TCM as reference and SRTM as simplified procedure. SRTM revealed the lowest AIC values. Both volume of distribution (r2 = 0.8793, p = 0.018) and BPnd (r2 = 0.8216, p = 0.034) correlated with in vitro autoradiography data. A significant age-related decrease of receptor binding was observed in auditory (AC, IC, MGB) and other brain regions (SC and CB) (p < 0.0001, unpaired t test) being confirmed by SPM using pons as reference (p < 0.0001, uncorrected).


Imaging of GABAA receptor binding capacity in gerbils using [18F]FMZ PET revealed SRTM as a simple and robust quantification method of GABAA receptors. Comparison of BPnd in young and old gerbils demonstrated an age-related decrease of GABAA receptor binding.

Key Words

Aging Bio-kinetic modeling GABAA-receptor Flumazenil Age-related hearing loss Auditory system Inhibitory neurotransmitter system 



We wish to thank Alexander Kanwischer and Petra Felsch for their support in performing the PET scans.

Funding Information

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2177/1 - Project ID 390895286.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Procedures, care, and treatment of the gerbils were conducted in conformity with the institutional responsible person for animal welfare at Hannover Medical School and in accordance with a permit issued by the responsible local authority (Landesamt für Verbraucherschutz und Lebensmittelsicherheit, LAVES, Lower Saxony, Germany). The use of animals in this study also complies with the “Guide for the Care and Use of Laboratory Animals” (NIH).

Supplementary material

11307_2019_1371_MOESM1_ESM.pdf (96 kb)
ESM 1 (PDF 96 kb)


  1. 1.
    Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233CrossRefGoogle Scholar
  2. 2.
    Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232CrossRefGoogle Scholar
  3. 3.
    Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516CrossRefGoogle Scholar
  4. 4.
    Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier J (1994) High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 35:1390–1396Google Scholar
  5. 5.
    Farde L (1996) The advantage of using positron emission tomography in drug research. Trends Neurosci 19:211–214CrossRefGoogle Scholar
  6. 6.
    Fujita M (2001) In vivo receptor imaging with PET and SPET-pitfalls in quantification. Int Rev Psychiatry 13:34–39CrossRefGoogle Scholar
  7. 7.
    Dupont P, Warwick J (2009) Kinetic modelling in small animal imaging with PET. Methods 48:98–103CrossRefGoogle Scholar
  8. 8.
    Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L (1991) Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 11:926–931CrossRefGoogle Scholar
  9. 9.
    Maggi A, Schmidt MJ, Ghetti B, Enna SJ (1979) Effect of aging on neurotransmitter receptor binding in rat and human brain. Life Sci 24:367–373CrossRefGoogle Scholar
  10. 10.
    McQuail JA, Frazier CJ, Bizon JL (2015) Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 21:450–460CrossRefGoogle Scholar
  11. 11.
    Owens DF, Kriegstein AR (2002) Is there more to gaba than synaptic inhibition? Nat Rev Neurosci 3:715–727CrossRefGoogle Scholar
  12. 12.
    Caspary DM, Llano DA (2018) Aging processes in the subcortical auditory system. Oxford University Press, Oxford. Google Scholar
  13. 13.
    Nutt D (2006) GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2:S7–S11Google Scholar
  14. 14.
    Young AB, Chu D (1990) Distribution of GABAA and GABAB receptors in mammalian brain: potential targets for drug development. Drug Dev Res 21:161–167CrossRefGoogle Scholar
  15. 15.
    Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383CrossRefGoogle Scholar
  16. 16.
    Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA;—benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396CrossRefGoogle Scholar
  17. 17.
    Schultz LM (1997) REVIEW: GABAergic inhibitory processes and hippocampal long-term potentiation. Neuroscientist 3:226–236CrossRefGoogle Scholar
  18. 18.
    Rodnick ME, Hockley BG, Sherman P, Quesada C, Battle MR, Jackson A, Linder KE, Macholl S, Trigg WJ, Kilbourn MR, Scott PJH (2013) Novel fluorine-18 PET radiotracers based on flumazenil for GABAA imaging in the brain. Nucl Med Biol 40:901–905CrossRefGoogle Scholar
  19. 19.
    Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(a) receptors. J Biol Chem 287:40224–40231CrossRefGoogle Scholar
  20. 20.
    Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABAA receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312CrossRefGoogle Scholar
  21. 21.
    Mandema JW, Gubbens-Stibbe JM, Danhof M (1991) Stability and pharmacokinetics of flumazenil in the rat. Psychopharmacology 103:384–387CrossRefGoogle Scholar
  22. 22.
    Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, Farde L (2009) [18F]flumazenil binding to central benzodiazepine receptor studies by PET--quantitative analysis and comparisons with [11C]flumazenil. NeuroImage 45:891–902CrossRefGoogle Scholar
  23. 23.
    Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791CrossRefGoogle Scholar
  24. 24.
    Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360CrossRefGoogle Scholar
  25. 25.
    Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat i inferior colliculus. Neurobiol Aging 15:699–703CrossRefGoogle Scholar
  26. 26.
    Milbrandt JC, Albin RL, Turgeon SM, Caspary DM (1996) GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458CrossRefGoogle Scholar
  27. 27.
    Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226CrossRefGoogle Scholar
  28. 28.
    Mills JH, Schmiedt RA, Kulish LF (1990) Age-related changes in auditory potentials of mongolian gerbil. Hear Res 46:201–210CrossRefGoogle Scholar
  29. 29.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  30. 30.
    Liang H, Zou G (2008) Improved AIC selection strategy for survival analysis. Comput Stat Data Anal 52:2538–2548CrossRefGoogle Scholar
  31. 31.
    Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, Gruber S, Wilson TC, Taylor NJ, Cailly T, Schedler M, Collier TL, Passchier J, Smits R, Mollitor J, Hoepping A, Mueller M, Genicot C, Mercier J, Gouverneur V (2016) Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun (Camb) 52:8361–8364CrossRefGoogle Scholar
  32. 32.
    Pachitariu M, Lyamzin DR, Sahani M, Lesica NA (2015) State-dependent population coding in primary auditory cortex. J Neurosci 35:2058–2073CrossRefGoogle Scholar
  33. 33.
    Beutelmann R, Laumen G, Tollin D, Klump GM (2015) Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses. J Acoust Soc Am 137:EL71–EL77CrossRefGoogle Scholar
  34. 34.
    Laumen G, Tollin DJ, Beutelmann R, Klump GM (2016) Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: effects of interaural time and level differences. Hear Res 337:46–58CrossRefGoogle Scholar
  35. 35.
    Kessler M, Mamach M, Beutelmann R, Bankstahl JP, Bengel FM, Klump GM, Berding G (2018) Activation in the auditory pathway of the gerbil studied with 18F-FDG PET: effects of anesthesia. Brain Struct Funct 223:4293–4305CrossRefGoogle Scholar
  36. 36.
    Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221(Suppl 1):1–272CrossRefGoogle Scholar
  37. 37.
    Thackeray JT, Bankstahl JP, Bengel FM (2015) Impact of image-derived input function and fit time intervals on Patlak quantification of myocardial glucose uptake in mice. J Nucl Med 56:1615–1621CrossRefGoogle Scholar
  38. 38.
    Kuntner C (2014) Kinetic modeling in pre-clinical positron emission tomography. Z Med Phys 24:274–285CrossRefGoogle Scholar
  39. 39.
    Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744CrossRefGoogle Scholar
  40. 40.
    Dedeurwaerdere S, Gregoire M-C, Vivash L, Roselt P, Binns D, Fookes C, Greguric I, Pham T, Loc’h C, Katsifis A, Hicks RJ, O’Brien TJ, Myers DE (2009) In-vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat. Eur J Nucl Med Mol Imaging 36:958–965CrossRefGoogle Scholar
  41. 41.
    Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P, Bouilleret V, Myers DE, Cook MJ, Hicks RJ, O'Brien TJ (2013) 18F-flumazenil: a gamma-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277CrossRefGoogle Scholar
  42. 42.
    Morris JS, Friston KJ, Dolan RJ (1998) Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc R Soc B Biol Sci 265:649–657CrossRefGoogle Scholar
  43. 43.
    Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham VJ (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439CrossRefGoogle Scholar
  44. 44.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158CrossRefGoogle Scholar
  45. 45.
    Klumpers U, H M, Veltman DJ, Boellaard R et al (2007) Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab 28:579–587CrossRefGoogle Scholar
  46. 46.
    Geeraerts T, P Coles J, I Aigbirhio F et al (2011) Validation of reference tissue modelling for [11C]flumazenil positron emission tomography following head injury. Ann Nucl Med 25:396–405CrossRefGoogle Scholar
  47. 47.
    Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, Wagner KJ, Drzezga A, Boecker H (2009) Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging 36:659–670CrossRefGoogle Scholar
  48. 48.
    Lopes Alves I, Vállez García DV, Parente A, Doorduin J, da Silva AMM, Koole M, Dierckx R, Willemsen A, Boellaard R (2018) Parametric imaging of [11C]flumazenil binding in the rat brain. Mol Imaging Biol 20:114–123CrossRefGoogle Scholar
  49. 49.
    Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998CrossRefGoogle Scholar
  50. 50.
    Hammers A, Panagoda P, Heckemann RA et al (2007) [11C]flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling? J Cereb Blood Flow Metab 28:207–216CrossRefGoogle Scholar
  51. 51.
    Lanz B, Poitry-Yamate C, Gruetter R (2014) Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. J Nucl Med 55:1380–1388CrossRefGoogle Scholar
  52. 52.
    Tsartsalis S, Tournier BB, Graf CE, Ginovart N, Ibáñez V, Millet P (2018) Dynamic image denoising for voxel-wise quantification with statistical parametric mapping in molecular neuroimaging. PLoS One 13:e0203589–e0203589CrossRefGoogle Scholar
  53. 53.
    Golla SSV, Adriaanse SM, Yaqub M, Windhorst AD, Lammertsma AA, van Berckel BNM, Boellaard R (2017) Model selection criteria for dynamic brain PET studies. EJNMMI Physics 4:30CrossRefGoogle Scholar
  54. 54.
    Parente A, Vállez García D, Shoji A, Lopes Alves I, Maas B, Zijlma R, Dierckx RAJO, Buchpiguel CA, de Vries EFJ, Doorduin J (2017) Contribution of neuroinflammation to changes in [11C]flumazenil binding in the rat brain: evaluation of the inflamed pons as reference tissue. Nucl Med Biol 49:50–56CrossRefGoogle Scholar
  55. 55.
    Barnard EA, Skolnick P, Olsen RW et al (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313Google Scholar
  56. 56.
    Palner M, Beinat C, Banister S, Zanderigo F, Park JH, Shen B, Hjoernevik T, Jung JH, Lee BC, Kim SE, Fung L, Chin FT (2016) Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor. EJNMMI Res 6:80CrossRefGoogle Scholar
  57. 57.
    Gyulai MD, Ferenc E, Mintun MD et al (2001) Dose-dependent enhancement of in vivo GABAA–benzodiazepine receptor binding by isoflurane. Anesthesiology 95:585–593CrossRefGoogle Scholar
  58. 58.
    Rissman RA, De Blas AL, Armstrong DM (2007) GABAA receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292CrossRefGoogle Scholar
  59. 59.
    Rissman RA, Mobley WC (2011) Implications for treatment: GABAA receptors in aging, down syndrome and Alzheimer’s disease. J Neurochem 117:613–622Google Scholar
  60. 60.
    Prieto E, Collantes M, Delgado M, Juri C, García-García L, Molinet F, Fernández-Valle ME, Pozo MA, Gago B, Martí-Climent JM, Obeso JA, Peñuelas I (2011) Statistical parametric maps of 18F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study. Eur J Nucl Med Mol Imaging 38:2228–2237CrossRefGoogle Scholar
  61. 61.
    Benfenati F, Cimino M, Agnati LF, Fuxe K (1986) Quantitative autoradiography of central neurotransmitter receptors: methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol Scand 128:129–146CrossRefGoogle Scholar
  62. 62.
    Pike VW, Halldin C, Crouzel C, Barré L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites--current status. Nucl Med Biol 20:503–525CrossRefGoogle Scholar
  63. 63.
    Andersson JD, Halldin C (2013) PET radioligands targeting the brain GABAA /benzodiazepine receptor complex. J Label Compd Radiopharm 56:196–206CrossRefGoogle Scholar
  64. 64.
    Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(a) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850CrossRefGoogle Scholar
  65. 65.
    Lee K-Y (2013) Pathophysiology of age-related hearing loss (peripheral and central). Korean J Audiol 17:45–49CrossRefGoogle Scholar
  66. 66.
    Banay-Schwartz M, Palkovits M, Lajtha A (1993) Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem Res 18:417–423CrossRefGoogle Scholar
  67. 67.
    Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372CrossRefGoogle Scholar
  68. 68.
    Gutierrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477CrossRefGoogle Scholar
  69. 69.
    Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol 379:455–465CrossRefGoogle Scholar
  70. 70.
    Godfrey DA, Chen K, O'Toole TR, Mustapha A (2017) Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 350:173–188CrossRefGoogle Scholar
  71. 71.
    Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169CrossRefGoogle Scholar
  72. 72.
    Ymer S, Draguhn A, Wisden W, Werner P, Keinänen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the gamma 1 subunit of GABAA/benzodiazepine receptors. EMBO J 9:3261–3267CrossRefGoogle Scholar
  73. 73.
    Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jiménez X, Figueiras FP, Popota F, Ruiz A, Flotats N, Fernández FJ, Rocha M, Rovira M, Víctor VM, Gispert JD (2012) In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain. Neurobiol Aging 33:1457–1465CrossRefGoogle Scholar
  74. 74.
    Hamezah HS, Durani LW, Ibrahim NF, Yanagisawa D, Kato T, Shiino A, Tanaka S, Damanhuri HA, Ngah WZW, Tooyama I (2017) Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp Gerontol 99:69–79CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • M. Kessler
    • 1
    • 2
    Email author
  • M. Mamach
    • 1
    • 2
    • 3
  • R. Beutelmann
    • 4
  • M. Lukacevic
    • 1
  • S. Eilert
    • 1
  • P. Bascuñana
    • 1
  • A. Fasel
    • 5
  • F. M. Bengel
    • 1
  • J. P. Bankstahl
    • 1
  • T. L. Ross
    • 1
  • G. M. Klump
    • 2
    • 4
  • G. Berding
    • 1
    • 2
  1. 1.Department of Nuclear MedicineHannover Medical SchoolHannoverGermany
  2. 2.Cluster of Excellence Hearing4allHannover Medical School and University of OldenburgHannoverGermany
  3. 3.Department of Medical Physics and Radiation ProtectionHannoverGermany
  4. 4.Division of Animal Physiology and Behaviour, Department for Neuroscience, School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
  5. 5.ABX Advanced Biochemical Compounds GmbHRadebergGermany

Personalised recommendations