Prognostic Value of O-(2-[18F]Fluoroethyl)-L-Tyrosine PET/CT in Newly Diagnosed WHO 2016 Grade II and III Glioma

  • Olivia Kertels
  • Almuth F. Kessler
  • Milena I. Mihovilovic
  • Antje Stolzenburg
  • Thomas Linsenmann
  • Samuel Samnick
  • Stephanie Brändlein
  • Camelia Maria Monoranu
  • Ralf-Ingo Ernestus
  • Andreas K. Buck
  • Mario Löhr
  • Constantin LapaEmail author
Research Article



The use of [18F]fluoroethyl)-l-tyrosine ([18F]FET) positron emission tomography/computed tomography (PET/CT) has proven valuable in brain tumor management. This study aimed to investigate the prognostic value of radiotracer uptake in newly diagnosed grade II or III gliomas according to the current 2016 World Health Organization (WHO) classification.


A total of 35 treatment-naive patients (mean age, 48 ± 17 years) with histologically proven WHO grade II or III gliomas as defined by the current 2016 WHO classification were included. Static PET/CT imaging was performed 20 min after intravenous [18F]FET injection. Images were assessed visually and semi-quantitatively using regions of interest for both tumor (SUVmax, SUVmean) and background (BKGmean) to calculate tumor-to-background (TBR) ratios. The association among histological results, molecular markers (including isocitrate dehydrogenase enzyme and methylguanine-DNA methyltransferase status), clinical features (age), and PET findings was tested and compared with outcome (progression-free [PFS] and overall survival [OS]).


Fourteen patients presented with grade II (diffuse astrocytoma n = 10, oligodendroglioma n = 4) and 21 patients with grade III glioma (anaplastic astrocytoma n = 15, anaplastic oligodendroglioma n = 6). Twenty-seven out of the 35 patients were PET-positive (grade II n = 8/14, grade III n = 19/21), with grade III tumors exhibiting significantly higher amino acid uptake (TBRmean and TBRmax; p = 0.03 and p = 0.02, respectively). PET-negative lesions demonstrated significantly prolonged PFS (p = 0.003) as compared to PET-positive gliomas. PET-positive disease had a complementary value in prognostication in addition to patient age, glioma grade, and molecular markers.


Amino acid uptake as assessed by [18F]FET-PET/CT imaging is useful as non-invasive read-out for tumor biology and prognosis in newly diagnosed, treatment-naive gliomas according to the 2016 WHO classification.

Key Words

Glioma FET PET WHO Prognosis 


Authors’ Contribution

Initials: Olivia Kertels (OK), Milena I. Mihovilovic (MIM), Antje Stolzenburg (AS), Thomas Linsenmann (TL), Samuel Samnick (SSa), Stephanie Brändlein (SB), Camelia Maria Monoranu (CMM), Ralf-Ingo Ernestus (RIE), Andreas K. Buck (AKB), Mario Löhr (ML), Almuth F. Kessler (AFK), Constantin Lapa (CL)

Conception and design: OK, MIM, TL, AFK, CL

Development of methodology: AS, SSa, SB, CMM, ML, CL

Acquisition of data: OK, MIM, TL, AKB, ML, AFK, CL

Analysis and interpretation of data: OK, MIM, AS, SSa, SB, CMM, RIE, AKB, ML, AFK, CL

Writing, review and/or revision of the manuscript: all authors

Administrative, technical, or material support: SSa, RIE, AKB, ML.

Supervision: RIE, AKB, ML, AFK, CL.

Compliance with Ethical Standards

The study adhered to the standards established in the declaration of Helsinki. Given its retrospective nature, the local ethics committee of the University of Würzburg waived the requirement for additional approval. All subjects gave written informed consent prior to [18F]FET-PET/CT imaging.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2019_1357_MOESM1_ESM.pdf (219 kb)
ESM 1 (PDF 219 kb)


  1. 1.
    Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481CrossRefGoogle Scholar
  2. 2.
    Popperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403Google Scholar
  3. 3.
    Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, Todica A, Brendel M, Tonn JC, Bartenstein P, la Fougère C (2016) Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging 43:1105–1114CrossRefGoogle Scholar
  4. 4.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefGoogle Scholar
  5. 5.
    Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ (2009) Comparison of 18F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787CrossRefGoogle Scholar
  6. 6.
    Plotkin M, Blechschmidt C, Auf G, Nyuyki F, Geworski L, Denecke T, Brenner W, Stockhammer F (2010) Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol 20:2496–2502CrossRefGoogle Scholar
  7. 7.
    Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, Niyazi M, Tonn JC, Bartenstein P, Kreth FW, la Fougere C (2015) Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med 56:9–15CrossRefGoogle Scholar
  8. 8.
    Suchorska B, Jansen NL, Linn J, Kretzschmar H, Janssen H, Eigenbrod S, Simon M, Popperl G, Kreth FW, la Fougere C, Weller M, Tonn JC, For the German Glioma Network (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719CrossRefGoogle Scholar
  9. 9.
    Unterrainer M, Schweisthal F, Suchorska B, Wenter V, Schmid-Tannwald C, Fendler WP, Schuller U, Bartenstein P, Tonn JC, Albert NL (2016) Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma: does it make sense? J Nucl Med 57:1177–1182CrossRefGoogle Scholar
  10. 10.
    Galldiks N, Langen KJ, Holy R et al (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057CrossRefGoogle Scholar
  11. 11.
    Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, Muigg A, Virgolini IJ, Staffen W, Trinka E, Gotwald T, Jacobs AH, Stockhammer G (2011) O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52:856–864CrossRefGoogle Scholar
  12. 12.
    Ceccon G, Lazaridis L, Stoffels G, Rapp M, Weber M, Blau T, Lohmann P, Kebir S, Herrmann K, Fink GR, Langen KJ, Glas M, Galldiks N (2018) Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: initial experience. Eur J Nucl Med Mol Imaging 45:1626–1635CrossRefGoogle Scholar
  13. 13.
    Kebir S, Fimmers R, Galldiks N, Schäfer N, Mack F, Schaub C, Stuplich M, Niessen M, Tzaridis T, Simon M, Stoffels G, Langen KJ, Scheffler B, Glas M, Herrlinger U (2016) Late Pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Cancer Res 22:2190–2196CrossRefGoogle Scholar
  14. 14.
    Mihovilovic MI, Kertels O, Hanscheid H et al (2019) O-(2-(18F)fluoroethyl)-L-tyrosine PET for the differentiation of tumour recurrence from late pseudoprogression in glioblastoma. J Neurol Neurosurg Psychiatry 90:238–239CrossRefGoogle Scholar
  15. 15.
    Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunner R, Fink GR, Drzezga A, Schmidt M, Langen KJ (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695CrossRefGoogle Scholar
  16. 16.
    Kunz M, Albert NL, Unterrainer M et al (2018) Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro-Oncology 21:274–284CrossRefGoogle Scholar
  17. 17.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, Neumaier B, Shah NJ, Langen KJ, Galldiks N (2018) Static and dynamic 18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging 45:443–451CrossRefGoogle Scholar
  18. 18.
    Rohrich M, Huang K, Schrimpf D et al (2018) Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas. Eur J Nucl Med Mol Imaging 45:1573–1584CrossRefGoogle Scholar
  19. 19.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefGoogle Scholar
  20. 20.
    Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRefGoogle Scholar
  21. 21.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  22. 22.
    Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, Bartenstein P, Schüller U, Tonn JC, Albert NL (2018) Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncology 20:279–288CrossRefGoogle Scholar
  23. 23.
    Bette S, Gempt J, Delbridge C, Kirschke JS, Schlegel J, Foerster S, Huber T, Pyka T, Zimmer C, Meyer B, Ringel F (2016) Prognostic value of O-(2-[18F]-fluoroethyl)-L-tyrosine-positron emission tomography imaging for histopathologic characteristics and progression-free survival in patients with low-grade glioma. World Neurosurg 89:230–239CrossRefGoogle Scholar
  24. 24.
    Isal S, Gauchotte G, Rech F et al (2018) A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse grade II-III gliomas. Br J Radiol 91:20170803Google Scholar
  25. 25.
    Cicone F, Carideo L, Scaringi C, et al. (2019) 18F-DOPA uptake does not correlate with IDH mutation status and 1p/19q co-deletion in glioma. Ann Nucl Med doi:
  26. 26.
    Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, Czernin J, Kessler AF, Homola GA, Ernestus RI, Lohr M, Herrmann K (2014) Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med 55:1611–1616CrossRefGoogle Scholar
  27. 27.
    Langen KJ, Bartenstein P, Boecker H et al (2011) German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 50:167–173CrossRefGoogle Scholar
  28. 28.
    Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, Schiepers C, Nghiemphu P, Lai A, Phelps ME, Chen W (2010) Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 51:1532–1538CrossRefGoogle Scholar
  29. 29.
    Woehrer A, Sander P, Haberler C, Kern S, Maier H, Preusser M, Hartmann C, Kros JM, Hainfellner JA, Research Committee of the European Confederation of Neuropathological Societies (2011) FISH-based detection of 1p 19q codeletion in oligodendroglial tumors: procedures and protocols for neuropathological practice - a publication under the auspices of the Research Committee of the European Confederation of Neuropathological Societies (Euro-CNS). Clin Neuropathol 30:47–55CrossRefGoogle Scholar
  30. 30.
    Brandner S, von Deimling A (2015) Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 41:694–720CrossRefGoogle Scholar
  31. 31.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefGoogle Scholar
  32. 32.
    van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJB, Jaeckle K, Junck L, Armstrong T, Choucair A, Waldman AD, Gorlia T, Chamberlain M, Baumert BG, Vogelbaum MA, Macdonald DR, Reardon DA, Wen PY, Chang SM, Jacobs AH (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefGoogle Scholar
  33. 33.
    Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, Jansen P, Coenen HH, Steiger HJ, Langen KJ (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527CrossRefGoogle Scholar
  34. 34.
    Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Långstrom B, Bolander H, Bergstrom M, Smits A (2001) Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549CrossRefGoogle Scholar
  35. 35.
    Manabe O, Hattori N, Yamaguchi S, Hirata K, Kobayashi K, Terasaka S, Kobayashi H, Motegi H, Shiga T, Magota K, Oyama-Manabe N, Nishijima KI, Kuge Y, Tamaki N (2015) Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging 42:896–904CrossRefGoogle Scholar
  36. 36.
    Popperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefGoogle Scholar
  37. 37.
    Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, Nagane M (2008) Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery 62:493–503 discussion 503-494CrossRefGoogle Scholar
  38. 38.
    Dunet V, Pomoni A, Hottinger A et al (2016) Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 2016 18:426–434Google Scholar
  39. 39.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougère C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 18:1199–1208CrossRefGoogle Scholar
  40. 40.
    Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 46:540–557CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • Olivia Kertels
    • 1
  • Almuth F. Kessler
    • 2
  • Milena I. Mihovilovic
    • 3
  • Antje Stolzenburg
    • 3
  • Thomas Linsenmann
    • 2
  • Samuel Samnick
    • 3
  • Stephanie Brändlein
    • 4
  • Camelia Maria Monoranu
    • 4
  • Ralf-Ingo Ernestus
    • 2
  • Andreas K. Buck
    • 3
  • Mario Löhr
    • 2
  • Constantin Lapa
    • 3
    Email author
  1. 1.Institute of Diagnostic RadiologyUniversity Hospital WürzburgWurzburgGermany
  2. 2.Department of NeurosurgeryUniversity Hospital WürzburgWurzburgGermany
  3. 3.Department of Nuclear MedicineUniversity Hospital WürzburgWurzburgGermany
  4. 4.Department of Neuropathology, Institute of PathologyUniversity of WürzburgWurzburgGermany

Personalised recommendations