Advertisement

Fluorescent Polymer Dots for Tracking SKOV3 Cells in Living Mice with Probe-Based Confocal Laser Endomicroscopy

  • Yufan Zhang
  • Yao Li
  • Yixiao Guo
  • Yidian Yang
  • Shiyi Tang
  • Liqin XiongEmail author
Brief Article
  • 31 Downloads

Abstract

Purpose

Probe-based confocal laser endomicroscopy (pCLE) is a novel technique allowing real-time and high-resolution imaging in vivo. It provides microscopic images and increases the penetration depth of tissues compared with conventional white light endoscopy. The aim of the present study was to track ovarian cancer cells in organs by fluorescent polymer dots based on pCLE.

Procedures

SKOV3-mCherry cells were incubated with polymer dots for 24 h in a serum-free culture medium. Labeled cells were administrated to nude mice via intravenous, intraperitoneal, and lymph node injection. The fluorescent signals of labeled cells in organs were observed by pCLE. Furthermore, the results were confirmed by frozen section analysis.

Results

pCLE displayed fluorescence signals of labeled cells in the vessels of organs. Besides, the accumulations of labeled cells visualized in detoxification organs like the spleen and kidney were increased with time.

Conclusions

In this article, we present a real-time and convenient method for tracking SKOV3-mCherry in living mice by combined fluorescent polymer dots with pCLE.

Key words

Polymer dots Fluorescence imaging pCLE Tracking Ovarian cancer 

Notes

Funding

This study was supported by grants from the National Key R&D Program of China (2016YFC1303100), the National Natural Science Foundation of China (81671738, 81301261, and 21374059), the Shanghai Pujiang Project (13PJ1405000), and the Medicine-Engineering Cross Project of Shanghai Jiao Tong University (YG2016MS73).

Compliance with Ethical Standards

Ethical Approval

All animal experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University (Shanghai, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2019_1343_MOESM1_ESM.pdf (2.7 mb)
ESM 1 (PDF 2723 kb)
11307_2019_1343_MOESM2_ESM.mp4 (1.8 mb)
ESM 2 (MP4 1806 kb)
11307_2019_1343_MOESM3_ESM.mp4 (772 kb)
ESM 3 (MP4 772 kb)

References

  1. 1.
    Chen D, Wu I, Liu Z, Tang Y, Chen H, Yu J, Wu C, Chiu DT (2017) Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci 8:3390–3398CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jeong S, Jung Y, Bok S, Ryu YM, Lee S, Kim YE, Song J, Kim M, Kim SY, Ahn GO, Kim S (2018) Multiplexed in vivo imaging using size-controlled quantum dots in the second near-infrared window. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201800695
  3. 3.
    Geng J, Li K, Ding D, Zhang X, Qin W, Liu J, Tang BZ, Liu B (2012) Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 8:3655–3663CrossRefPubMedGoogle Scholar
  4. 4.
    Xiong L, Guo Y, Zhang Y, Cao F (2016) Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. J Mater Chem B 4:202–206CrossRefGoogle Scholar
  5. 5.
    Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235CrossRefPubMedGoogle Scholar
  6. 6.
    Zhen X, Xie C, Pu K (2018) Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew Chem 130:4002–4006CrossRefGoogle Scholar
  7. 7.
    Guo L, Ge J, Wang P (2018) Polymer dots as effective phototheranostic agents. Photochem Photobiol 94:916–934CrossRefPubMedGoogle Scholar
  8. 8.
    Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst JV, Pu K (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110PubMedGoogle Scholar
  9. 9.
    Kim J, Lee TS (2018) Emission tuning with size-controllable polymer dots from a single conjugated polymer. Small 1702758:1–7Google Scholar
  10. 10.
    Jiang Y, Pu K (2018) Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv Biosys 1700262:1–10Google Scholar
  11. 11.
    Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L (2018) Multiscale imaging of brown adipose tissue in living mice/rats with fluorescent polymer dots. ACS Appl Mater Inter 10:20884–20896CrossRefGoogle Scholar
  12. 12.
    Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo KQ, Xu C, Duan H, Ding D, Chen P, Pu K (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Accounts Chem Res 51:1840–1849CrossRefGoogle Scholar
  14. 14.
    Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O'Neal S, Zamboni W, Amiji MM, Coleman TP (2015) EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy. Pharm Res 32:2753–2763PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S (2018) Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 17:109CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li L, Bi X, Sun H, Liu S, Yu M, Zhang Y, Weng S, Yang L, Bao Y, Wu J, Xu Y, Shen K (2018) Characterization of ovarian cancer cells and tissues by Fourier transform infrared spectroscopy. J Ovarian Res 11:64CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Viswanathan S, Rani C, Delerue-Matos C (2012) Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes. Anal Chim Acta 726:79–84CrossRefPubMedGoogle Scholar
  18. 18.
    Giri S, Shah SH, Batra K, Anu-Bajracharya, Jain V, Shukla H, Sekhon R, Rawal S (2016) Presentation and management of inguinal lymphadenopathy in ovarian cancer. Indian J Surg Oncol 7:436–440CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang B, Chen F, Xu Q et al (2017) Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 9:674–692CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pu T, Xiong L, Liu Q, Zhang M, Cai Q, Liu H, Sood AK, Li G, Kang Y, Xu C (2017) Delineation of retroperitoneal metastatic lymph nodes in ovarian cancer with near-infrared fluorescence imaging. Oncol Lett 14:2869–2877CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ke C, Fang C, Yan J et al (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano 11:3166–3177CrossRefPubMedGoogle Scholar
  22. 22.
    Wang KK, Carr-Locke DL, Singh SK, Neumann H, Bertani H, Galmiche JP, Arsenescu RI, Caillol F, Chang KJ, Chaussade S, Coron E, Costamagna G, Dlugosz A, Ian Gan S, Giovannini M, Gress FG, Haluszka O, Ho KY, Kahaleh M, Konda VJ, Prat F, Shah RJ, Sharma P, Slivka A, Wolfsen HC, Zfass A (2015) Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United Eur Gastroenterol J 3:230–254CrossRefGoogle Scholar
  23. 23.
    Chene G, Chauvy L, Buenerd A, Moret S, Nadaud B, Beaufils E, le Bail-Carval K, Chabert P, Mellier G, Lamblin G (2017) In vivo confocal laser endomicroscopy during laparoscopy for gynecological surgery: a promising tool. J Gynecol Obstet Hum Reprod 46:565–569CrossRefPubMedGoogle Scholar
  24. 24.
    Bisschops R, Bergman J (2010) Probe-based confocal laser endomicroscopy: scientific toy or clinical tool? Endoscopy 42:487–489CrossRefPubMedGoogle Scholar
  25. 25.
    Wallace MB, Fockens P (2009) Probe-based confocal laser endomicroscopy. Gastroenterology 136:1509–1513CrossRefPubMedGoogle Scholar
  26. 26.
    Richardson C, Colavita P, Dunst C, Bagnato J, Billing P, Birkenhagen K, Buckley F, Buitrago W, Burnette J, Leggett P, McCollister H, Stewart K, Wang T, Zfass A, Severson P (2018) Real-time diagnosis of Barrett’s esophagus: a prospective, multicenter study comparing confocal laser endomicroscopy with conventional histology for the identification of intestinal metaplasia in new users. Surg Endosc.  https://doi.org/10.1007/s00464-018-6420-9
  27. 27.
    Wu L, Yu H, Zhou R, Luo J, Zhao J, Li Y, Wang K, Wang Y, Li H (2018) Probe-based confocal laser endomicroscopy for diagnosis of nasopharyngeal carcinoma in vivo. Laryngoscope.  https://doi.org/10.1002/lary.27450
  28. 28.
    Xiong L (2016) Recent advances on near-infrared-emitting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer dots for in vivo imaging. Gen Chem 2:99–106CrossRefGoogle Scholar
  29. 29.
    Cao F, Guo Y, Li Y et al (2018) Fast and accurate imaging of lymph node metastasis with multifunctional near-infrared polymer dots. Adv Funct Mater 1707174:1–18Google Scholar
  30. 30.
    Guo Y, Cao F, Li Y, Xiong L (2017) Facilely synthesized pH-responsive fluorescent polymer dots entrapping doped and coupled doxorubicin for nucleus-targeted chemotherapy. J Mater Chem B 5:2921–2930CrossRefGoogle Scholar
  31. 31.
    Xiong L, Cao F, Cao X, Guo Y, Zhang Y, Cai X (2015) Long-term-stable near-infrared polymer dots with ultrasmall size and narrow-band emission for imaging tumor vasculature in vivo. Bioconjug Chem 26:817–821CrossRefPubMedGoogle Scholar
  32. 32.
    Trottmann M, Stepp H, Sroka R, Heide M, Liedl B, Reese S, Becker AJ, Stief CG, Kölle S (2015) Probe-based confocal laser endomicroscopy (pCLE)–a new imaging technique for in situ localization of spermatozoa. J Biophotonics 8:415–421CrossRefPubMedGoogle Scholar
  33. 33.
    Wu G, Wang Z, Bian X, du X, Wei C (2014) Folate-modified doxorubicin-loaded nanoparticles for tumor-targeted therapy. Pharm Biol 52:978–982CrossRefPubMedGoogle Scholar
  34. 34.
    Ocak M, Gillman AG, Bresee J, Zhang L, Vlad AM, Müller C, Schibli R, Edwards WB, Anderson CJ, Gach HM (2015) Folate receptor-targeted multimodality imaging of ovarian cancer in a novel syngeneic mouse model. Mol Pharm 12:542–553CrossRefPubMedGoogle Scholar
  35. 35.
    Cao F, Xiong L (2016) Folic acid functionalized PFBT fluorescent polymer dots for tumor imaging. Chinese J Chem 34:570–575CrossRefGoogle Scholar
  36. 36.
    Meining A, Shah RJ, Slivka A, Pleskow D, Chuttani R, Stevens PD, Becker V, Chen YK (2012) Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures. Endoscopy 44:251–257CrossRefPubMedGoogle Scholar
  37. 37.
    Han S, Woo S, Suh CH, Lee JJ (2018) Performance of pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography for detecting metastasis in ovarian cancer : a systematic review and meta-analysis. J Gynecol Oncol 29Google Scholar
  38. 38.
    Trottmann M, Stepp H, Sroka R, Heide M, Liedl B, Reese S, Becker AJ, Stief CG, Kölle S (2015) Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa. J Biophotonics 8:415–421CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  1. 1.Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations