Advertisement

Characterization of Brown Adipose Tissue in a Diabetic Mouse Model with Spiral Volumetric Optoacoustic Tomography

  • Avihai Ron
  • Xosé Luís Deán-Ben
  • Josephine Reber
  • Vasilis Ntziachristos
  • Daniel Razansky
Brief Article
  • 123 Downloads

Abstract

Purpose

Diabetes is associated with a deterioration of the microvasculature in brown adipose tissue (BAT) and with a decrease in its metabolic activity. Multispectral optoacoustic tomography has been recently proposed as a new tool capable of differentiating healthy and diabetic BAT by observing hemoglobin gradients and microvasculature density in cross-sectional (2D) views. We report on the use of spiral volumetric optoacoustic tomography (SVOT) for an improved characterization of BAT.

Procedures

A streptozotocin-induced diabetes model and control mice were scanned with SVOT. Volumetric oxygen saturation (sO2) as well as total blood volume (TBV) in the subcutaneous interscapular BAT (iBAT) was quantified. Segmentation further enabled separating feeding and draining vessels from the BAT anatomical structure.

Results

Scanning revealed a 46 % decrease in TBV and a 25 % decrease in sO2 in the diabetic iBAT with respect to the healthy control.

Conclusions

These results suggest that SVOT may serve as an effective tool for studying the effects of diabetes on BAT. The volumetric optoacoustic imaging probe used for the SVOT scans can be operated in a handheld mode, thus potentially providing a clinical translation route for BAT-related studies with this imaging technology.

Key words

Optoacoustic Brown fat Metabolism Hemoglobin Oxygen saturation Adipose tissue Angiopathy 

Notes

Acknowledgements

The authors wish to thank Mr. Uwe Klemm and Mr. Michael Reiss for their support with animal handling.

Funding Information

The work leading to these results was partially supported by the Human Frontier Science Program (HFSP) Grant RGY0070/201 and the European Research Council Grant ERC-2015-CoG-682379. Support from the Deutsche Forschungsgemeinschaft (DFG), Germany [Gottfried Wilhelm Leibniz Prize 2013; NT 3/10-1], and from the European Research Council (ERC) under grant agreement No 694968 (PREMSOT) is further acknowledged.

Compliance with Ethical Standards

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2018_1291_MOESM1_ESM.pdf (242 kb)
ESM 1 (PDF 242 kb)

References

  1. 1.
    Owens B (2014) The changing colour of fat. Nature 508(7496):S52–S53CrossRefGoogle Scholar
  2. 2.
    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol-Endoc Metab 293:E444–E452CrossRefGoogle Scholar
  3. 3.
    Enerbäck S (2010) Human brown adipose tissue. Cell Metab 11:248–252CrossRefGoogle Scholar
  4. 4.
    Orava J, Nuutila P, Lidell Martin E et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279CrossRefGoogle Scholar
  5. 5.
    Xu L, Kanasaki K, Kitada M, Koya D (2012) Diabetic angiopathy and angiogenic defects. Fibrogen Tissue Rep 5:  https://doi.org/10.1186/1755-1536-5-13 CrossRefGoogle Scholar
  6. 6.
    Cinti S (2012) The adipose organ at a glance. Dise Model Mech 5:588–594CrossRefGoogle Scholar
  7. 7.
    Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226CrossRefGoogle Scholar
  8. 8.
    Tekabe Y, Johnson LL, Rodriquez K, Li Q, Backer M, Backer JM (2018) Selective imaging of vascular endothelial growth factor receptor-1 and receptor-2 in atherosclerotic lesions in diabetic and non-diabetic apoe−/− mice. Mol Imaging Biol 20:85–93CrossRefGoogle Scholar
  9. 9.
    Mirbolooki MR, Constantinescu CC, Pan M-L, Mukherjee J (2011) Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1:30.  https://doi.org/10.1186/2191-219X-1-30 CrossRefGoogle Scholar
  10. 10.
    Lindholm H, Brolin F, Jonsson C, Jacobsson H (2014) Effects on the FDG distribution by a high uptake of brown adipose tissue at PET examination. EJNMMI Res 4:72.  https://doi.org/10.1186/s13550-014-0072-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Boer SA, Spoor DS, Slart RHJA, et al. (2018) Performance evaluation of a semi-automated method for [18F]FDG uptake in abdominal visceral adipose tissue. Mol Imaging Biol  https://doi.org/10.1007/s11307-018-1211-1
  12. 12.
    Ran C, Albrecht DS, Bredella MA, et al. (2017) PET imaging of human brown adipose tissue with the TSPO tracer [11C]PBR28. Mol Imaging Biol  https://doi.org/10.1007/s11307-017-1129-z CrossRefGoogle Scholar
  13. 13.
    Eriksson O, Mikkola K, Espes D, Tuominen L, Virtanen K, Forsback S, Haaparanta-Solin M, Hietala J, Solin O, Nuutila P (2015) The cannabinoid receptor-1 is an imaging biomarker of brown adipose tissue. J Nucl Med 56:1937–1941CrossRefGoogle Scholar
  14. 14.
    Clerte M, Baron DM, Brouckaert P et al (2013) Brown adipose tissue blood flow and mass in obesity: a contrast ultrasound study in mice. J Am Soc Echocardiog 26:1465–1473CrossRefGoogle Scholar
  15. 15.
    Nakayama A, Bianco AC, Zhang C-Y, et al. (2003) Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging. Mol imaging. 2:  https://doi.org/10.1162/15353500200303103 CrossRefGoogle Scholar
  16. 16.
    Crane JD, Mottillo EP, Farncombe TH, Morrison KM, Steinberg GR (2014) A standardized infrared imaging technique that specifically detects ucp1-mediated thermogenesis in vivo. Mol Metab 3:490–494CrossRefGoogle Scholar
  17. 17.
    Reber J, Willershäuser M, Karlas A, Paul-Yuan K, Diot G, Franz D, Fromme T, Ovsepian SV, Bézière N, Dubikovskaya E, Karampinos DC, Holzapfel C, Hauner H, Klingenspor M, Ntziachristos V (2018) Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab 27:689–701CrossRefGoogle Scholar
  18. 18.
    Chan XHD, Balasundaram G, Attia ABE, Goggi JL, Ramasamy B, Han W, Olivo M, Sugii S (2018) Multimodal imaging approach to monitor browning of adipose tissue in vivo. J Lipid Res 59:1071–1078CrossRefGoogle Scholar
  19. 19.
    Deán-Ben XL, Fehm TF, Ford SJ, Gottschalk S, Razansky D (2017) Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light: Sci App 6:e16247CrossRefGoogle Scholar
  20. 20.
    Fehm TF, Deán-Ben XL, Ford SJ, Razansky D (2016) In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3:1153–1159CrossRefGoogle Scholar
  21. 21.
    Xu M, Wang LV (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71:016706CrossRefGoogle Scholar
  22. 22.
    Dean-Ben XL, Ozbek A, Razansky D (2013) Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans Med Imaging 32:2050–2055CrossRefGoogle Scholar
  23. 23.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–R61CrossRefGoogle Scholar
  24. 24.
    Razansky D (2012) Multispectral optoacoustic tomography—volumetric color hearing in real time. IEEE J Sel Topics Quant 18:1234–1243CrossRefGoogle Scholar
  25. 25.
    Nnodim JO, Lever JD (1988) Neural and vascular provisions of rat interscapular brown adipose tissue. Am J Anat 182:283–293CrossRefGoogle Scholar
  26. 26.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyb 9:62–66CrossRefGoogle Scholar
  27. 27.
    Deán-Ben XL, Razansky D (2013) Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt Express 21:28062–28071CrossRefGoogle Scholar
  28. 28.
    Deán-Ben XL, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci Appl 3:e137CrossRefGoogle Scholar
  29. 29.
    Deán-Ben XL, Razansky D (2016) On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photo-Dermatology 4:133–140Google Scholar
  30. 30.
    Deán-Ben XL, López-Schier H, Razansky D (2017) Optoacoustic micro-tomography at 100 volumes per second. Sci Rep 7:6850CrossRefGoogle Scholar
  31. 31.
    Deán-Ben X, Fehm TF, Razansky D (2014) Universal hand-held three-dimensional optoacoustic imaging probe for deep tissue human angiography and functional preclinical studies in real time. J Vis Exper: JoVE 93:51864Google Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Avihai Ron
    • 1
  • Xosé Luís Deán-Ben
    • 1
  • Josephine Reber
    • 1
  • Vasilis Ntziachristos
    • 1
  • Daniel Razansky
    • 1
  1. 1.Institute for Biological and Medical ImagingTechnical University of Munich and Helmholtz Center MunichMunichGermany

Personalised recommendations