Advertisement

Predictive Value of [18F]ML-10 PET/CT in Early Response Evaluation of Combination Radiotherapy with Cetuximab on Nasopharyngeal Carcinoma

  • Bingxin Gu
  • Shuai Liu
  • Yuyun Sun
  • Jianping Zhang
  • Yongping Zhang
  • Xiaoping Xu
  • Huiyu Yuan
  • Mingwei Wang
  • Yingjian Zhang
  • Zhongyi Yang
Research Article

Abstract

Purpose

Apoptosis may be an indication of success therapy, and precise detection of apoptosis can provide instructional suggestions in the therapy management of malignant tumors.

Procedures

We used CNE-1 cell lines for in vitro experiments, and colony formation assay, CCK-8 assay, cell apoptosis analysis, and western blotting were performed. For in vivo experiments, subcutaneous xenotransplanted tumor models of CNE-1 in nude mice were established. Then, small animal positron emission tomography/X-ray computed tomography (PET/CT) images were acquired by tail intravenous injection of 2-(5-[18F]fluoropentyl)-2-methyl-malonic acid ([18F]ML-10) or 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) before and 24 h and 48 h after treatment. Moreover, expression of epidermal growth factor receptor (EGFR), Ki-67, Glut-1, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was examined by immunohistochemical examination. Tumor volumes of mice were recorded every 2 days.

Results

In the presence of Cetuximab, the number of colonies of CNE-1 cells decreased significantly after irradiation at 1 and 2 Gy. In addition, Cetuximab increased the radiation-induced cytotoxicity and apoptosis of CNE-1 cells. Mechanistic studies demonstrated that Cetuximab enhanced radiosensitivity by suppressing the EGFR/PI3-K/AKT pathway. In PET/CT imaging, the tumors showed clear uptake of [18F]ML-10 at 24 h and 48 h after combined treatment, and the value of tumor/muscle (T/M) and SUVmax (the max of standard uptake value) was significantly higher than those of the other three groups. The T/M of [18F]ML-10 uptake showed a positive correlation of 0.926 with the apoptosis index (P < 0.001). However, the uptake of [18F]FDG in tumors exhibited no trend among the four groups. The T/M of [18F]FDG revealed a positive correlation of 0.926 with Glut-1 intensity (P < 0.001).

Conclusions

Our work revealed that Cetuximab could increase the radiosensitivity of CNE-1 cells both in vitro and in vivo. Apoptosis imaging with [18F]ML-10 PET/CT is a promising modality for application in the response prediction of nasopharyngeal carcinoma.

Key words

Nasopharyngeal carcinoma Positron emission tomography CNE-1 cells Radiotherapy sensitivity Epidermal growth factor receptor 

Notes

Acknowledgements

We wish to thank Jianmin Luo for excellent technical assistances.

Funding Information

This study was funded by the National Natural Science Foundation of China (No. 81501503) and the Shanghai Engineering Research Center of Molecular Imaging Probes Program (No. 14DZ2251400).

Compliance with Ethical Standards

All animal experiments met guidelines evaluated and approved by the ethics committee of Fudan University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Supplementary material

11307_2018_1277_MOESM1_ESM.pdf (1005 kb)
ESM 1 (PDF 1004 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chua MLK, Wee JTS, Hui EP, Chan ATC (2016) Nasopharyngeal carcinoma. Lancet 387:1012–1024CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, Chan AT, Huang PY, Benhamou E, Zhu G, Chua DT, Chen Y, Mai HQ, Kwong DL, Cheah SL, Moon J, Tung Y, Chi KH, Fountzilas G, Zhang L, Hui EP, Lu TX, Bourhis J, Pignon JP, MAC-NPC Collaborative Group (2015) Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol 16:645–655CrossRefGoogle Scholar
  4. 4.
    Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19:124–134CrossRefGoogle Scholar
  5. 5.
    Zhang P, Wu SK, Wang Y et al (2015) p53, MDM2, eIF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: a retrospective study. Oncol Lett 9:113–118CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chan AT, Hsu MM, Goh BC et al (2005) Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J Clin Oncol 23:3568–3576CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ma BB, Kam MK, Leung SF et al (2012) A phase II study of concurrent cetuximab-cisplatin and intensity-modulated radiotherapy in locoregionally advanced nasopharyngeal carcinoma. Ann Oncol 23:1287–1292CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Suntharalingam M, Kwok Y, Goloubeva O, Parekh A, Taylor R, Wolf J, Zimrin A, Strome S, Ord R, Cullen KJ (2012) Phase II study evaluating the addition of cetuximab to the concurrent delivery of weekly carboplatin, paclitaxel, and daily radiotherapy for patients with locally advanced squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 82:1845–1850CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, Ulysse LG, Friedman G, Antoni G, Ziv I (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–1528CrossRefPubMedCentralGoogle Scholar
  10. 10.
    (2013) Poster Presentation. J Label Compd Radiopharm 56:S88–S462.  https://doi.org/10.1002/jlcr.3058
  11. 11.
    Chen QY, Wen YF, Guo L, Liu H, Huang PY, Mo HY, Li NW, Xiang YQ, Luo DH, Qiu F, Sun R, Deng MQ, Chen MY, Hua YJ, Guo X, Cao KJ, Hong MH, Qian CN, Mai HQ (2011) Concurrent chemoradiotherapy vs radiotherapy alone in stage II nasopharyngeal carcinoma: phase III randomized trial. J Natl Cancer Inst 103:1761–1770CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lee AW, Ng WT, Chan LL et al (2014) Evolution of treatment for nasopharyngeal cancer—success and setback in the intensity-modulated radiotherapy era. Radiother Oncol 110:377–384CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wu X, Huang PY, Peng PJ, Lu LX, Han F, Wu SX, Hou X, Zhao HY, Huang Y, Fang WF, Zhao YY, Xue C, Hu ZH, Zhang J, Zhang JW, Ma YX, Liang WH, Zhao C, Zhang L (2013) Long-term follow-up of a phase III study comparing radiotherapy with or without weekly oxaliplatin for locoregionally advanced nasopharyngeal carcinoma. Ann Oncol 24:2131–2136CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lee AW, Foo W, Mang O et al (2003) Changing epidemiology of nasopharyngeal carcinoma in Hong Kong over a 20-year period (1980-99): an encouraging reduction in both incidence and mortality. Int J Cancer 103:680–685CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tang LL, Chen WQ, Xue WQ, He YQ, Zheng RS, Zeng YX, Jia WH (2016) Global trends in incidence and mortality of nasopharyngeal carcinoma. Cancer Lett 374:22–30CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Xu Z-X, Lin Z-X, Fang J-Y, Wu KS, du PL, Zeng Y, Tang WR, Xu XL, Lin K (2015) Mortality characteristic and prediction of nasopharyngeal carcinoma in China from 1991 to 2013. Asian Pac J Cancer Prev 16:6729–6734CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chua DTT, Nicholls JM, Sham JST, Au GKH (2004) Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 59:11–20CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ma X, Huang J, Wu X, Li X, Zhang J, Xue L, Li P, Liu L (2014) Epidermal growth factor receptor could play a prognostic role to predict the outcome of nasopharyngeal carcinoma: a meta-analysis. Cancer Biomark 14:267–277CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Trivedi S, Concha-Benavente F, Srivastava RM, Jie HB, Gibson SP, Schmitt NC, Ferris RL (2015) Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol 26:40–47CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bussink J, van der Kogel AJ, Kaanders JHAM (2008) Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol 9:288–296CrossRefGoogle Scholar
  22. 22.
    Gu J, Yin L, Wu J, Zhang N, Huang T, Ding K, Cao H, Xu L, He X (2016) Cetuximab and cisplatin show different combination effect in nasopharyngeal carcinoma cells lines via inactivation of EGFR/AKT signaling pathway. Biochem Res Int 2016:7016907CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stegeman H, Kaanders JH, van der Kogel AJ, Iida M, Wheeler DL, Span PN, Bussink J (2013) Predictive value of hypoxia, proliferation and tyrosine kinase receptors for EGFR-inhibition and radiotherapy sensitivity in head and neck cancer models. Radiother Oncol 106:383–389CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sung FL, Poon TCW, Hui EP et al (2005) Antitumor effect and enhancement of cytotoxic drug activity by cetuximab in nasopharyngeal carcinoma cells. In Vivo 19:237–245PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ralph W, Umar M (2001) Molecular imaging. Radiology 219:316–333CrossRefGoogle Scholar
  26. 26.
    Hatt M, Majdoub M, Vallieres M et al (2014) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555PubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DH (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952Google Scholar
  29. 29.
    Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK, Krohn KA, Mankoff DA (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cohen A, Shirvan A, Levin G (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19:625–637CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hoglund J, Shirvan A, Antoni G, Gustavsson SA, Langstrom B, Ringheim A, Sorensen J, Ben-Ami M, Ziv I (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Oborski MJ, Laymon CM, Qian Y, Lieberman FS, Nelson AD, Mountz JM (2014) Challenges and approaches to quantitative therapy response assessment in glioblastoma multiforme using the novel apoptosis positron emission tomography tracer F-18 ML-10. Transl Oncol 7:111–119CrossRefPubMedCentralGoogle Scholar
  33. 33.
    De Saint-Hubert M, Prinsen K, Mortelmans L et al (2009) Molecular imaging of cell death. Methods 48:178–187CrossRefGoogle Scholar
  34. 34.
    Neves AA, Brindle KM (2006) Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta 1766:242–261PubMedPubMedCentralGoogle Scholar
  35. 35.
    Oborski MJ, Laymon CM, Lieberman FS, Drappatz J, Hamilton RL, Mountz JM (2014) First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy. Brain Behav 4:312–315CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, Larson S, Mankoff DA, Siegel BA, van den Abbeele A, Yap J, Sullivan D, National Cancer Institute (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute trials. J Nucl Med 47:1059–1066PubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Bingxin Gu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Shuai Liu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yuyun Sun
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jianping Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yongping Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Xiaoping Xu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Huiyu Yuan
    • 1
    • 2
    • 3
    • 4
    • 5
  • Mingwei Wang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yingjian Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Zhongyi Yang
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Center for Biomedical ImagingFudan UniversityShanghaiChina
  4. 4.Shanghai Engineering Research Center of Molecular Imaging ProbesShanghaiChina
  5. 5.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)Fudan UniversityShanghaiChina

Personalised recommendations