Advertisement

Molecular Imaging and Biology

, Volume 21, Issue 3, pp 529–537 | Cite as

Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell-Free Protein Synthesis System and O-2-[18F]Fluoroethyl-L-Tyrosine: [18F]FET-HER2 Affibody Molecule

  • Ai Yanai
  • Ryuichi HaradaEmail author
  • Ren Iwata
  • Takeo Yoshikawa
  • Yoichi Ishikawa
  • Shozo Furumoto
  • Takanori Ishida
  • Kazuhiko Yanai
Research Article
  • 179 Downloads

Abstract

Purpose

Although a preparation method for F-18-labeled proteins that used a cell-free translation system and 4-[18F]fluoro-L-proline instead of L-proline has been reported, its introduction depends on amino acid sequences of target proteins. The purpose of the study was to propose site-specific labeling method of F-18 by using cell-free translation systems supplemented with an engineered orthogonal aminoacyl-tRNA synthetase derived from Methanocaldococcus jannaschii (pCNF-RS)/suppressor tRNA (tRNACUAopt) pair, O-2-[18F]fluoroethyl-L-tyrosine ([18F]FET), and template DNA inserted with an amber codon.

Procedures

[18F]FET was prepared from the corresponding precursor and determined whether [18F]FET could be incorporated into an affibody molecule for human epidermal growth factor receptor type 2 (HER2; ZHER2:342) as the 21st amino acid used with the pCNF-RS-tRNACUAopt pair and template DNA inserted with an amber codon in a cell-free translation system. Using SKOV-3 cells, we performed an in vitro binding assay of [18F]FET-ZHER2:342. Furthermore, in vivo positron emission tomography (PET) imaging in SKOV-3 xenograft-bearing mice was performed after the intravenous administration of [18F]FET-ZHER2:342.

Results

[18F]FET was successfully incorporated into proteins by using commercially available cell-free protein synthesis reagents with a pCNF-RS-tRNACUAopt pair and template DNA of the desired proteins inserted with an amber codon. The mean radiochemical yield (non-decay-corrected) of [18F]FET-ZHER2:342 was 6.5 ± 4.1 %. An in vitro cell binding assay revealed that SKOV-3 cells–bound [18F]FET-ZHER2:342 expressed HER2. The in vivo PET imaging in SKOV-3 xenograft-bearing mice revealed that [18F]FET-ZHER2:342 accumulated in SKOV-3 xenografts.

Conclusion

The method proposed in this study might be useful for preparing proteins with F-18 and molecular imaging in the preclinical development.

Key words

Cell-free protein synthesis Engineered orthogonal aminoacyl-tRNA synthetase [18F]FET Affibody 

Notes

Acknowledgments

This study was supported by Grants-in-Aid for Scientific Research (16 K15314) from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology, Japan. We wish to acknowledge the contribution of Mr. Takahiro Morito for technical support and the staff at the Cyclotron and Radioisotope Center of Tohoku University for the HM-12 cyclotron operation. We acknowledge the support of the Biomedical Research Core of Tohoku University Graduate School of Medicine.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2018_1266_MOESM1_ESM.pdf (278 kb)
ESM 1 (PDF 277 kb)

References

  1. 1.
    Koerber JT, Thomsen ND, Hannigan BT, Degrado WF, Wells JA (2013) Nature-inspired design of motif-specific antibody scaffolds. Nat Biotechnol 31:916–921CrossRefGoogle Scholar
  2. 2.
    Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S (2017) Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods 130:23–35CrossRefGoogle Scholar
  3. 3.
    Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, Lub-de Hooge MN, Brouwers AH, de Vries EGE (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90SCrossRefGoogle Scholar
  4. 4.
    Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568CrossRefGoogle Scholar
  5. 5.
    Orlova A, Magnusson M, Eriksson TL et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348CrossRefGoogle Scholar
  6. 6.
    Wallberg H, Grafstrom J, Cheng Q, Lu L, Martinsson Ahlzen HS, Samen E, Thorell JO, Johansson K, Dunas F, Olofsson MH, Stone-Elander S, Arner ESJ, Stahl S (2012) HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule. J Nucl Med 53:1446–1453CrossRefGoogle Scholar
  7. 7.
    Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D (2013) Three methods for 18F labeling of the HER2-binding affibody molecule ZHER2:2891 including preclinical assessment. J Nucl Med 54:1981–1988CrossRefGoogle Scholar
  8. 8.
    Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Ishiwata K, Iwata R, Yanai K (2016) Synthesis and characterization of 18F-interleukin-8 using a cell-free translation system and 4-18F-fluoro-L-proline. J Nucl Med 57:634–639CrossRefGoogle Scholar
  9. 9.
    Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Iwata R, Yanai K (2012) Synthesis of [11C]interleukin 8 using a cell-free translation system and L-[11C]methionine. Nucl Med Biol 39:155–160CrossRefGoogle Scholar
  10. 10.
    Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755CrossRefGoogle Scholar
  11. 11.
    Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRefGoogle Scholar
  12. 12.
    Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500CrossRefGoogle Scholar
  13. 13.
    Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367CrossRefGoogle Scholar
  14. 14.
    Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418:652–656CrossRefGoogle Scholar
  15. 15.
    Young DD, Young TS, Jahnz M, Ahmad I, Spraggon G, Schultz PG (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50:1894–1900CrossRefGoogle Scholar
  16. 16.
    Tolmachev V, Hofstrom C, Malmberg J et al (2010) HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [99mTc(CO3)]+, and shows improved biodistribution with reduced hepatic radioactivity accumulation. Bioconjug Chem 21:2013–2022CrossRefGoogle Scholar
  17. 17.
    Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374CrossRefGoogle Scholar
  18. 18.
    Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K (2018) Practical microscale one-pot radiosynthesis of (18) F-labeled probes. J Labelled Comp Radiopharm 61:540–549CrossRefGoogle Scholar
  19. 19.
    Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefGoogle Scholar
  20. 20.
    Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137CrossRefGoogle Scholar
  21. 21.
    Qi Y, Liu X, Li J, Yao H, Yuan S (2017) Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8:60581–60588Google Scholar
  22. 22.
    Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C, Sabel M, Steiger HJ, Reifenberger G, Beez T, Coenen HH, Floeth FW, Langen KJ (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235CrossRefGoogle Scholar
  23. 23.
    Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53:207–214CrossRefGoogle Scholar
  24. 24.
    Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J (2008) [18F]FBEM-Z(HER2:342)-affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018CrossRefGoogle Scholar
  25. 25.
    Morris O, Fairclough M, Grigg J, et al. (2018) A review of approaches to (18) F radiolabelling affinity peptides and proteins. J Labelled Comp RadiopharmGoogle Scholar
  26. 26.
    Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A 107:15039–15044CrossRefGoogle Scholar
  27. 27.
    Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212Google Scholar
  28. 28.
    Stahl S, Graslund T, Eriksson Karlstrom A et al (2017) Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35:691–712CrossRefGoogle Scholar
  29. 29.
    Ahlgren S, Orlova A, Wallberg H, Hansson M, Sandstrom M, Lewsley R, Wennborg A, Abrahmsen L, Tolmachev V, Feldwisch J (2010) Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 51:1131–1138CrossRefGoogle Scholar
  30. 30.
    Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, Nilsson FY, Wennborg A, Abrahmsen L, Feldwisch J (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.Department of Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Cyclotron and Radioisotope Center (CYRIC)Tohoku UniversitySendaiJapan

Personalised recommendations