Molecular Imaging and Biology

, Volume 20, Issue 5, pp 742–749 | Cite as

On the Usage of Brain Atlases in Neuroimaging Research

  • Andreas Hess
  • Rukun Hinz
  • Georgios A. Keliris
  • Philipp Boehm-Sturm
Review Article


Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.

Key words

Brain atlas Neuroimaging Vasculature Image registration 



The writing of this review was initiated by the members of the Molecular Neuroimaging Study Group of the European Society for Molecular Imaging (ESMI). We gratefully thank the ESMI for their support and the possibility of establishing the study group as a platform for scientific exchange within the society and beyond.

Funding Information

This work is supported by the Deutsche Forschungsgemeinschaft (DFG Cluster of Excellence NeuroCURE, Exc 257 to P.B-S.), the German Federal Ministry of Education and Research (BMBF; 01EO0801, Center for Stroke Research Berlin to P.B-S. and BMBF NeuroRad (02NUK034D to A.H.), BMBF NeuroImpa (01EC1403C) to A.H.), INCF Digital Atlasing program to A.H., the Research Foundation - Flanders (FWO G048917N to R.H. and G.A.K.), and Flagship ERA-NET (FLAG-ERA) FUSIMICE (grant agreement G.0D7651N to R.H. and G.A.K.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    (1879) The people’s cyclopedia of universal knowledge: with numerous appendixes invaluable for reference in all departments of industrial life, the whole brought down to the year 1883. Phillips & HuntGoogle Scholar
  2. 2.
    Simpson D (2005) Phrenology and the neurosciences: contributions of F.J. Gall and J.G. Spurzheim. ANZ J Surg 75:475–482PubMedCrossRefGoogle Scholar
  3. 3.
    Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier Acad. Press, AmsterdamGoogle Scholar
  4. 4.
    Paxinos G, Watson C (2018) The rat brain in stereotaxic coordinates. Elsevier Acad. Press, AmsterdamGoogle Scholar
  5. 5.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human Brain.3-dimensional proportional system: an approach to cerebral imaging. Thieme Medical Publishers, StuttgartGoogle Scholar
  6. 6.
    Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, Hawrylycz M, Dang C (2012) Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41:D996–D1008PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Adrianov OS, Mering TA, Mering TA (2010) Atlas of the canine brain. NPP Books, ArlingtonGoogle Scholar
  9. 9.
    Palazzi X (2011) The beagle brain in stereotaxic coordinates. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
    Snider RS, Niemer WT (1961) A stereotaxic atlas of the cat brain. University of Chicago Press, ChicagoGoogle Scholar
  11. 11.
    Paxinos G, Huang X-F, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, Sat Lake CityGoogle Scholar
  12. 12.
    Palazzi X, Bordier N (2008) The marmoset brain in stereotaxic coordinates. The marmoset brain in stereotaxic coordinates. Springer, New York, pp 1–59CrossRefGoogle Scholar
  13. 13.
    Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, LeipzigGoogle Scholar
  14. 14.
    Hess A, Lohmann K, Gundelfinger ED, Scheich H (1998) A new method for reliable and efficient reconstruction of 3-dimensional images from autoradiographs of brain sections. J Neurosci Methods 84:77–86PubMedCrossRefGoogle Scholar
  15. 15.
    Simonetti AW, Elezi VA, Farion R, Malandain G, Segebarth C, Rémy C, Barbier EL (2006) A low temperature embedding and section registration strategy for 3D image reconstruction of the rat brain from autoradiographic sections. J Neurosci Methods 158:242–250PubMedCrossRefGoogle Scholar
  16. 16.
    Roy D, Steyer GJ, Gargesha M, Stone ME, Wilson DL (2009) 3D cryo-imaging: a very high-resolution view of the whole mouse. Anat Rec (Hoboken) 292:342–351CrossRefGoogle Scholar
  17. 17.
    Wilson D, Roy D, Steyer G et al (2008) Whole mouse cryo-imaging. Proc SPIE Int Soc Opt Eng 6916:69161I–69161I9PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tajika Y, Murakami T, Iijima K, Gotoh H, Takahashi-Ikezawa M, Ueno H, Yoshimoto Y, Yorifuji H (2017) A novel imaging method for correlating 2D light microscopic data and 3D volume data based on block-face imaging. Sci Rep 7:3645PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kimura J, Hirano Y, Takemoto S, Nambo Y, Ishinazaka T, Himeno R, Mishima T, Tsumagari S, Yokota H (2005) Three-dimensional reconstruction of the equine ovary. Anat Histol Embryol 34:48–51PubMedCrossRefGoogle Scholar
  20. 20.
    Amato SP, Pan F, Schwartz J, Ragan TM (2016) Whole brain imaging with serial two-photon tomography. Front Neuroanat 10:31PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim WH, Adluru N, Chung MK, Okonkwo OC, Johnson SC, B. Bendlin B, Singh V (2015) Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer’s disease. Neuroimage 118:103–117PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kovačević N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelman RM, Chen XJ (2005) A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 15:639–645PubMedCrossRefGoogle Scholar
  25. 25.
    Badea A, Johnson GA (2012) Magnetic resonance microscopy. Anal Cell Pathol (Amst) 35:205–227CrossRefGoogle Scholar
  26. 26.
    Johnson GA, Benveniste H, Black RD, Hedlund LW, Maronpot RR, Smith BR (1993) Histology by magnetic resonance microscopy. Magn Reson Q 9:1–30PubMedGoogle Scholar
  27. 27.
    Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42:60–69PubMedCrossRefGoogle Scholar
  28. 28.
    Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, McGuigan MD, Benveniste H (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215PubMedCrossRefGoogle Scholar
  29. 29.
    Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, Merlo-Pich EV, Bifone A (2006) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. Neuroimage 32:538–550PubMedCrossRefGoogle Scholar
  30. 30.
    Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JLR (2003) A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 129:105–113PubMedCrossRefGoogle Scholar
  31. 31.
    MacKenzie-Graham A, Lee E-F, Dinov ID, Bota M, Shattuck DW, Ruffins S, Yuan H, Konstantinidis F, Pitiot A, Ding Y, Hu G, Jacobs RE, Toga AW (2004) A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat 204:93–102PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Scholz J, LaLiberté C, van Eede M, Lerch JP, Henkelman M (2016) Variability of brain anatomy for three common mouse strains. Neuroimage 142:656–662PubMedCrossRefGoogle Scholar
  33. 33.
    Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG (2014) Waxholm space atlas of the Sprague Dawley rat brain. Neuroimage 97:374–386PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Johnson GA, Badea A, Brandenburg J, Cofer G, Fubara B, Liu S, Nissanov J (2010) Waxholm space: an image-based reference for coordinating mouse brain research. Neuroimage 53:365–372PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hjornevik T, Leergaard TB, Darine D et al (2007) Three-dimensional atlas system for mouse and rat brain imaging data. Front Neuroinform 1:4PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nie B, Chen K, Zhao S, Liu J, Gu X, Yao Q, Hui J, Zhang Z, Teng G, Zhao C, Shan B (2013) A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis. Hum Brain Mapp 34:1306–1318PubMedCrossRefGoogle Scholar
  37. 37.
    Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221:1–272PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kaufman HH, Cohen G, Glass TF, Huchton JD, Pruessner JL, Ostrow PT, Andia-Waltenbaugh AM, Dujovny M (1981) CT atlas of the dog brain. J Comput Assist Tomogr 5:529–537PubMedCrossRefGoogle Scholar
  39. 39.
    Datta R, Lee J, Duda J, Avants BB, Vite CH, Tseng B, Gee JC, Aguirre GD, Aguirre GK (2012) A digital atlas of the dog brain. PLoS One 7:e52140PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Stolzberg D, Wong C, Butler BE, Lomber SG (2017) Catlas: an magnetic resonance imaging-based three-dimensional cortical atlas and tissue probability maps for the domestic cat (Felis catus). J Comp Neurol 525:3190–3206PubMedCrossRefGoogle Scholar
  41. 41.
    Liu C, Ye FQ, Yen CC-C, Newman JD, Glen D, Leopold DA, Silva AC (2018) A digital 3D atlas of the marmoset brain based on multi-modal MRI. Neuroimage 169:106–116PubMedCrossRefGoogle Scholar
  42. 42.
    Woodward A, Hashikawa T, Maeda M, Kaneko T, Hikishima K, Iriki A, Okano H, Yamaguchi Y (2018) The brain/MINDS 3D digital marmoset brain atlas. Sci Data 5:180009PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ghosh P, O’Dell M, Narasimhan PT et al (1994) Mouse Lemur microscopic MRI brain atlas. Neuroimage 1:345–349PubMedCrossRefGoogle Scholar
  44. 44.
    Hutchinson EB, Schwerin SC, Radomski KL, Sadeghi N, Jenkins J, Komlosh ME, Irfanoglu MO, Juliano SL, Pierpaoli C (2017) Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis. Neuroimage 152:575–589PubMedCrossRefGoogle Scholar
  45. 45.
    Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). Neuroimage 2:89–101PubMedCrossRefGoogle Scholar
  47. 47.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  48. 48.
    Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29:9661–9664PubMedCrossRefGoogle Scholar
  49. 49.
    Abbott DF, Pell GS, Pardoe HR, Jackson GD (2012) Selecting appropriate voxel-based methods for neuroimaging studies. Neuroimage 59:885–886PubMedCrossRefGoogle Scholar
  50. 50.
    Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16:1091–1101PubMedCrossRefGoogle Scholar
  52. 52.
    May A (2008) Chronic pain may change the structure of the brain. Pain 137:7–15PubMedCrossRefGoogle Scholar
  53. 53.
    Matharu MS, Good CD, May A, Bahra A, Goadsby PJ (2003) No change in the structure of the brain in migraine: a voxel-based morphometric study. Eur J Neurol 10:53–57PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2013) Structural brain changes in chronic pain reflect probably neither damage nor atrophy. PLoS One 8:e54475PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV (2011) Brain morphological signatures for chronic pain. PLoS One 6:e26010PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Henkelman RM, Josselyn SA, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54:2086–2095PubMedCrossRefGoogle Scholar
  57. 57.
    Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2013) Voxel-based morphometry with templates and validation in a mouse model of Huntington’s disease. Magn Reson Imaging 31:1522–1531PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Koch S, Mueller S, Foddis M et al (2017) Atlas registration for edema-corrected MRI lesion volume in mouse stroke models. J Cereb Blood Flow Metab.
  59. 59.
    Badea A, Nicholls PJ, Johnson GA, Wetsel WC (2007) Neuroanatomical phenotypes in the Reeler mouse. Neuroimage 34:1363–1374PubMedCrossRefGoogle Scholar
  60. 60.
    Badea A, Johnson GA, Jankowsky JL (2010) Remote sites of structural atrophy predict later amyloid formation in a mouse model of Alzheimer’s disease. Neuroimage 50:416–427PubMedCrossRefGoogle Scholar
  61. 61.
    Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA (2016) The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer’s disease. Neuroimage 142:498–511PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000CrossRefGoogle Scholar
  63. 63.
    Viergever MA, Maintz JBA, Klein S, Murphy K, Staring M, Pluim JPW (2016) A survey of medical image registration—under review. Med Image Anal 33:140–144PubMedCrossRefGoogle Scholar
  64. 64.
    Maintz JB, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36PubMedCrossRefGoogle Scholar
  65. 65.
    Sawiak SJ, Wood NI, Williams GB, et al (2009) SPMMouse: a new toolbox for SPM in the animal brain. Proc Int’l Soc Mag Res Med. p 1086Google Scholar
  66. 66.
    Hikishima K, Komaki Y, Seki F, Ohnishi Y, Okano HJ, Okano H (2017) In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Sci Rep 7:85PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nitzsche B, Frey S, Collins LD et al (2015) A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front Neuroanat 9:69PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dickie DA, Shenkin SD, Anblagan D et al (2017) Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front Neuroinform 11:1PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, van Essen DC (2016) The human connectome project’s neuroimaging approach. Nat Neurosci 19:1175–1187PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hess A, Stiller D, Kaulisch T, Heil P, Scheich H (2000) New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex. J Neurosci 20:3328–3338PubMedCrossRefGoogle Scholar
  72. 72.
    Ohl FW, Scheich H (1997) Orderly cortical representation of vowels based on formant interaction. Proc Natl Acad Sci U S A 94:9440–9444PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sokoloff L, Reivich M, Kennedy C, Rosiers MHD, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  74. 74.
    Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K (2007) Brain functional localization: a survey of image registration techniques. IEEE Trans Med Imaging 26:427–451PubMedCrossRefGoogle Scholar
  75. 75.
    Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113:7900–7905PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vul E, Harris C, Winkielman P, Pashler H (2009) Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci 4:274–290PubMedCrossRefGoogle Scholar
  77. 77.
    Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450PubMedCrossRefGoogle Scholar
  78. 78.
    Hess A, Axmann R, Rech J, Finzel S, Heindl C, Kreitz S, Sergeeva M, Saake M, Garcia M, Kollias G, Straub RH, Sporns O, Doerfler A, Brune K, Schett G (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci 108:3731–3736PubMedCrossRefGoogle Scholar
  79. 79.
    Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS (2015) Controllability of structural brain networks. Nat Commun 6:8414PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15:247–262PubMedPubMedCentralGoogle Scholar
  81. 81.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRefGoogle Scholar
  82. 82.
    Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3:121–145PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ganglberger F, Kaczanowska J, Penninger JM, Hess A, Bühler K, Haubensak W (2018) Predicting functional neuroanatomical maps from fusing brain networks with genetic information. Neuroimage 170:113–120PubMedCrossRefGoogle Scholar
  84. 84.
    Grandjean J, Zerbi V, Balsters JH, Wenderoth N, Rudin M (2017) Structural basis of large-scale functional connectivity in the mouse. J Neurosci 37:8092–8101PubMedCrossRefGoogle Scholar
  85. 85.
    Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107PubMedCrossRefGoogle Scholar
  87. 87.
    Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW, Simpson JH (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8:493–498PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145PubMedCrossRefGoogle Scholar
  89. 89.
    Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1–19PubMedCrossRefGoogle Scholar
  90. 90.
    Poirier C, Vellema M, Verhoye M, van Meir V, Wild JM, Balthazart J, van der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6PubMedCrossRefGoogle Scholar
  91. 91.
    De Groof G, George I, Touj S et al (2016) A three-dimensional digital atlas of the starling brain. Brain Struct Funct 221:1899–1909PubMedCrossRefGoogle Scholar
  92. 92.
    Vellema M, Verschueren J, Van Meir V, Van der Linden A (2011) A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. Neuroimage 57:352–361PubMedCrossRefGoogle Scholar
  93. 93.
    Karten HJ, Brzozowska-Prechtl A, Lovell PV, Tang DD, Mello CV, Wang H, Mitra PP (2013) Digital atlas of the zebra finch (Taeniopygia guttata) brain: a high-resolution photo atlas. J Comp Neurol 521:3702–3715PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Güntürkün O, Verhoye M, De Groof G, Van der Linden A (2013) A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct Funct 218:269–281PubMedCrossRefGoogle Scholar
  95. 95.
    Simões JM, Teles MC, Oliveira RF, van der Linden A, Verhoye M (2012) A three-dimensional stereotaxic MRI brain atlas of the cichlid fish Oreochromis mossambicus. PLoS One 7:e44086PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wulliman MF, Rupp B, Reichert H (2012) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhäuser, BaselGoogle Scholar
  97. 97.
    Anken RH, Bourrat F (1998) Brain atlas of the medakafish: Oryzias latipes. Institute National de la Recherche Agronomique, VersaillesGoogle Scholar
  98. 98.
    Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, Portugues R, Lacoste AMB, Riegler C, Engert F, Schier AF (2015) Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 12:1039–1046PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    D’angelo L (2013) Brain atlas of an emerging Teleostean model: Nothobranchius furzeri. Anat Rec 296:681–691CrossRefGoogle Scholar
  100. 100.
    Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38PubMedCrossRefGoogle Scholar
  101. 101.
    Majka P, Chlodzinska N, Turlejski K et al (2017) A three-dimensional stereotaxic atlas of the gray short-tailed opossum (Monodelphis domestica) brain. Brain Struct Funct 223:1779–1795PubMedPubMedCentralGoogle Scholar
  102. 102.
    Bakker R, Tiesinga P, Kötter R (2015) The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13:353–366PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Okamura-Oho Y, Shimokawa K, Takemoto S, Hirakiyama A, Nakamura S, Tsujimura Y, Nishimura M, Kasukawa T, Masumoto KH, Nikaido I, Shigeyoshi Y, Ueda HR, Song G, Gee J, Himeno R, Yokota H (2012) Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS One 7:e45373PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35:1409–1423PubMedCrossRefGoogle Scholar
  106. 106.
    Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, Yang Z, Xu T, Yang X, Li X, Jiang T, Luo Q, Gong H (2017) Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front Neuroanat 11:128PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Joshi R, Yanasak N (2011) Magnetic resonance angiography study of a normal mouse brain for creating a three-dimensional cerebral vasculature atlas and software for labeling vessels. 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). pp 966–968Google Scholar
  108. 108.
    Chen C-C V, Chen Y-C, Hsiao H-Y et al (2013) Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies. J Biomed Sci 20:47PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mayerich D, Kwon J, Sung C, Abbott L, Keyser J, Choe Y (2011) Fast macro-scale transmission imaging of microvascular networks using KESM. Biomed Opt Express 2:2888–2896PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wu J, He Y, Yang Z, Guo C, Luo Q, Zhou W, Chen S, Li A, Xiong B, Jiang T, Gong H (2014) 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. Neuroimage 87:199–208PubMedCrossRefGoogle Scholar
  111. 111.
    Xue S, Gong H, Jiang T, Luo W, Meng Y, Liu Q, Chen S, Li A (2014) Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain. PLoS One 9:e88067PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M (2016) Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Rep 16:1138–1152PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lugo-Hernandez E, Squire A, Hagemann N, Brenzel A, Sardari M, Schlechter J, Sanchez-Mendoza EH, Gunzer M, Faissner A, Hermann DM (2017) 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J Cereb Blood Flow Metab 37:3355–3367PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Zhang L-Y, Lin P, Pan J, Ma Y, Wei Z, Lu J, Wang L, Song Y, Wang Y, Zhang Z, Jin K, Wang Q, Yang G-Y (2018) Clarity for high-resolution imaging and quantification of vasculature in the whole mouse brain. Aging Dis 9:262–272PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Di Giovanna AP, Tibo A, Silvestri L et al (2017) Whole-brain vasculature reconstruction at the single capillary level. bioRxivGoogle Scholar
  116. 116.
    Robertson RT, Levine ST, Haynes SM, Gutierrez P, Baratta JL, Tan Z, Longmuir KJ (2015) Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143:225–234PubMedCrossRefGoogle Scholar
  117. 117.
    Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, Wang VX, Tang CY, Olsen O, Dulac C, Osten P, Tessier-Lavigne M (2016) Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165:1789–1802PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Deffieux T, Demene C, Pernot M, Tanter M (2018) Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr Opin Neurobiol 50:128–135PubMedCrossRefGoogle Scholar
  119. 119.
    Tiran E, Ferrier J, Deffieux T, Gennisson JL, Pezet S, Lenkei Z, Tanter M (2017) Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent. Ultrasound Med Biol 43:1679–1689PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Starosolski Z, Villamizar CA, Rendon D, Paldino MJ, Milewicz DM, Ghaghada KB, Annapragada AV (2015) Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Sci Rep 5:10178PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Pastor G, Jiménez-González M, Plaza-García S, Beraza M, Padro D, Ramos-Cabrer P, Reese T (2017) A general protocol of ultra-high resolution MR angiography to image the cerebro-vasculature in 6 different rats strains at high field. J Neurosci Methods 289:75–84PubMedCrossRefGoogle Scholar
  122. 122.
    Howles GP, Ghaghada KB, Qi Y, Mukundan S Jr, Johnson GA (2009) High-resolution magnetic resonance angiography in the mouse using a nanoparticle blood-pool contrast agent. Magn Reson Med 62:1447–1456PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Klohs J, Baltes C, Princz-Kranz F, Ratering D, Nitsch RM, Knuesel I, Rudin M (2012) Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic ArcAβ mice. J Neurosci 32:1705–1713PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.Institute for Experimental PharmacologyFriedrich Alexander University Erlangen NurembergErlangenGermany
  2. 2.Bio-Imaging LabUniversity of AntwerpAntwerpBelgium
  3. 3.Department of Experimental Neurology and Center for Stroke Research BerlinCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  4. 4.NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIsCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations