Molecular Imaging and Biology

, Volume 20, Issue 5, pp 732–741 | Cite as

X-ray-Based 3D Virtual Histology—Adding the Next Dimension to Histological Analysis

  • J. Albers
  • S. Pacilé
  • M. A. Markus
  • M. Wiart
  • G. Vande Velde
  • G. Tromba
  • C. Dullin
Review Article


Histology and immunohistochemistry of thin tissue sections have been the standard diagnostic procedure in many diseases for decades. This method is highly specific for particular tissue regions or cells, but mechanical sectioning of the specimens is required, which destroys the sample in the process and can lead to non-uniform tissue deformations. In addition, regions of interest cannot be located beforehand and the analysis is intrinsically two-dimensional. Micro X-ray computed tomography (μCT) on the other hand can provide 3D images at high resolution and allows for quantification of tissue structures, as well as the localization of small regions of interest. These advantages advocate the use of μCT for virtual histology tool with or without subsequent classical histology. This review summarizes the most recent examples of virtual histology and provides currently known possibilities of improving contrast and resolution of μCT. Following a background in μCT imaging, ex vivo staining procedures for contrast enhancement are presented as well as label-free virtual histology approaches and the technologies, which could rapidly advance it, such as phase-contrast CT. Novel approaches such as zoom tomography and nanoparticulate contrast agents will also be considered. The current evidence suggests that virtual histology may present a valuable addition to the workflow of histological analysis, potentially reducing the workload in pathology, refining tissue classification, and supporting the detection of small malignancies.

Key words

μCT X-ray imaging Histology Synchrotron Phase contrast Soft-tissue staining 



This work was supported by the members of the X-ray Imaging Study Group within the European Society for Molecular Imaging.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sands GB, Gerneke DA, Hooks DA, Green CR, Smaill BH, Legrice IJ (2005) Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech 67:227–239CrossRefPubMedGoogle Scholar
  2. 2.
    Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS (2012) Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt Express 20:20582–20598CrossRefPubMedGoogle Scholar
  3. 3.
    Pieles G, Geyer SH, Szumska D, Schneider J, Neubauer S, Clarke K, Dorfmeister K, Franklyn A, Brown SD, Bhattacharya S, Weninger WJ (2007) μMRI–HREM pipeline for high-throughput, high-resolution phenotyping of murine embryos. J Anat 211:132–137CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Winick H (1987) Synchrotron radiation. Sci Am 257:88–101CrossRefPubMedGoogle Scholar
  5. 5.
    Powles-Glover N, De Schaepdrijver L, French J, Stewart J (2014) Comparison of Faxitron™ versus MicroCT imaging of the skeleton of the suckling rat. Reprod Toxicol 48:44–50CrossRefPubMedGoogle Scholar
  6. 6.
    Tavella S, Ruggiu A, Giuliani A, Brun F, Canciani B, Manescu A, Marozzi K, Cilli M, Costa D, Liu Y, Piccardi F, Tasso R, Tromba G, Rustichelli F, Cancedda R (2012) Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS). PLoS One 7:e33179CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Minematsu A, Nishii Y, Imagita H, Takeshita D, Sakata S (2016) Whole-body vibration can attenuate the deterioration of bone mass and trabecular bone microstructure in rats with spinal cord injury. Spinal Cord 54:597–603CrossRefPubMedGoogle Scholar
  8. 8.
    Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and μCT. J Bone Miner Res 20:1177–1184CrossRefPubMedGoogle Scholar
  9. 9.
    Schneider P, Meier M, Wepf R, Müller R (2010) Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 47:848–858CrossRefPubMedGoogle Scholar
  10. 10.
    Cooper DML, Erickson B, Peele AG, Hannah K, Thomas CDL, Clement JG (2011) Visualization of 3D osteon morphology by synchrotron radiation micro-CT. J Anat 219:481–489CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Müller R (2007) Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 22:1557–1570CrossRefPubMedGoogle Scholar
  12. 12.
    Wolf TG, Paqué F, Woop A-C, Willershausen B, Briseño-Marroquín B (2017) Root canal morphology and configuration of 123 maxillary second molars by means of micro-CT. Int J Oral Sci 9:33–37CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kitchen MJ, Buckley GA, Gureyev TE, Wallace MJ, Andres-Thio N, Uesugi K, Yagi N, Hooper SB (2017) CT dose reduction factors in the thousands using X-ray phase contrast. Sci Rep 7:15953CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Busse M, Müller M, Kimm MA, Ferstl S, Allner S, Achterhold K, Herzen J, Pfeiffer F (2018) Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography. Proc Natl Acad Sci 115:2293–2298CrossRefPubMedGoogle Scholar
  15. 15.
    Tanabe N, Vasilescu DM, Kirby M et al (2018) Analysis of airway pathology in COPD using a combination of computed tomography, micro-computed tomography and histology. Eur Respir J 1701245:51Google Scholar
  16. 16.
    Huang H, Chen J, Wang Y, Chen XY, Gong DC (2017) Study on multi-density contrast agent fillers of duct casting based on CT three-dimensional reconstruction. J Huazhong Univ Sci Technolog Med Sci 37:300–306CrossRefPubMedGoogle Scholar
  17. 17.
    Wagner R, Van Loo D, Hossler F et al (2011) High-resolution imaging of kidney vascular corrosion casts with Nano-CT. Microsc Microanal 17:215–219CrossRefPubMedGoogle Scholar
  18. 18.
    Russo FM, Toelen J, Eastwood MP, Jimenez J, Miyague AH, Vande Velde G, DeKoninck P, Himmelreich U, Vergani P, Allegaert K, Deprest J (2016) Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 71:517–525. CrossRefPubMedGoogle Scholar
  19. 19.
    Ehling J, Babi kova J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, Kiessling F, Floege J, Lammers T, Boor P (2016) Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol 27:520–532CrossRefPubMedGoogle Scholar
  20. 20.
    Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Metscher BD (2009) MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 238:632–640CrossRefPubMedGoogle Scholar
  22. 22.
    Dullin C, Ufartes R, Larsson E, Martin S, Lazzarini M, Tromba G, Missbach-Guentner J, Pinkert-Leetsch D, Katschinski DM, Alves F (2017) μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS One 12:e0170597CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Missbach-Guentner J, Pinkert-Leetsch D, Dullin C, Ufartes R, Hornung D, Tampe B, Zeisberg M, Alves F (2018) 3D virtual histology of murine kidneys–high resolution visualization of pathological alterations by micro computed tomography. Sci Rep 8:1407CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Morales AG, Stempinski ES, Xiao X et al (2016) Micro-CT scouting for transmission electron microscopy of human tissue specimens. J Microsc 263:113–117CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Saccomano M, Albers J, Tromba G et al (2018) Synchrotron inline phase contrast μCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. J Synchrotron Radiat
  26. 26.
    Bhaduri B, Edwards C, Pham H, Zhou R, Nguyen TH, Goddard LL, Popescu G (2014) Diffraction phase microscopy: principles and applications in materials and life sciences. Adv Opt Photon 6:57–119CrossRefGoogle Scholar
  27. 27.
    Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRefPubMedGoogle Scholar
  28. 28.
    Shikhaliev PM, Fritz SG (2011) Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application. Phys Med Biol 56:1905–1930CrossRefPubMedGoogle Scholar
  29. 29.
    Porra L, Dégrugilliers L, Broche L, Albu G, Strengell S, Suhonen H, Fodor GH, Peták F, Suortti P, Habre W, Sovijärvi ARA, Bayat S (2018) Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Sci Rep 8:3519CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brun F, Massimi L, Fratini M, Dreossi D, Billé F, Accardo A, Pugliese R, Cedola A (2017) SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows. Adv Struct Chem Imaging 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koh S, Suh S, Lee D et al (2006) Phase contrast radiography of Lewy bodies in Parkinson disease. Neuroimage 32:566–569CrossRefPubMedGoogle Scholar
  32. 32.
    Noda-Saita K, Yoneyama A, Shitaka Y, Hirai Y, Terai K, Wu J, Takeda T, Hyodo K, Osakabe N, Yamaguchi T, Okada M (2006) Quantitative analysis of amyloid plaques in a mouse model of Alzheimer’s disease by phase-contrast X-ray computed tomography. Neuroscience 138:1205–1213CrossRefPubMedGoogle Scholar
  33. 33.
    Connor DM, Benveniste H, Dilmanian FA, Kritzer MF, Miller LM, Zhong Z (2009) Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage 46:908–914CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pinzer B, Cacquevel M, Modregger P et al (2012) Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage 61:1336–1346CrossRefPubMedGoogle Scholar
  35. 35.
    Astolfo A, Lathuiliere A, Laversenne V et al (2016) Amyloid-β plaque deposition measured using propagation-based X-ray phase contrast CT imaging. J Synchrotron Radiat 23:813–819CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schulz G, Waschkies C, Pfeiffer F, Zanette I, Weitkamp T, David C, Müller B (2012) Multimodal imaging of human cerebellum-merging X-ray phase microtomography, magnetic resonance microscopy and histology. Sci Rep 2:826CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schulz G, Weitkamp T, Zanette I, Pfeiffer F, Beckmann F, David C, Rutishauser S, Reznikova E, Muller B (2010) High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast. J R Soc Interface 7:1665–1676. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dyer EL, Roncal WG, Prasad JA et al (2017) Quantifying mesoscale neuroanatomy using X-ray microtomography. eNeuro 4:ENEURO.0195–ENEU17.2017. CrossRefGoogle Scholar
  39. 39.
    Töpperwien M, Krenkel M, Vincenz D, Stöber F, Oelschlegel AM, Goldschmidt J, Salditt T (2017) Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography. Sci Rep 7:42847CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang M, Sun D, Xie Y et al (2014) Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. Br J Radiol 87:20130670CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Miao P, Wu Z, Li M et al (2016) Synchrotron radiation X-ray phase-contrast tomography visualizes microvasculature changes in mice brains after ischemic injury. Neural Plast 2016:3258494CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bartels M, Krenkel M, Cloetens P, Möbius W, Salditt T (2015) Myelinated mouse nerves studied by X-ray phase contrast zoom tomography. J Struct Biol 192:561–568CrossRefPubMedGoogle Scholar
  43. 43.
    Pfeiffer F, Bunk O, David C, Bech M, le Duc G, Bravin A, Cloetens P (2007) High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography. Phys Med Biol 52:6923–6930CrossRefPubMedGoogle Scholar
  44. 44.
    Prajapati SI, Kilcoyne A, Samano AK, Green DP, McCarthy SD, Blackman BA, Brady MM, Zarzabal LA, Tatiparthy AK, Sledz TJ, Duong T, Ohshima-Hosoyama S, Giles FJ, Michalek JE, Rubin BP, Keller C (2011) MicroCT-based virtual histology evaluation of preclinical medulloblastoma. Mol Imaging Biol 13:493–499CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lwin T-T, Yoneyama A, Hara A et al (2016) Spontaneous brain tumor imaging of aged rat by crystal X-ray interferometer-based phase-contrast X-ray CT. Acta Radiol Open 5:2058460115626958PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kerckhofs G, Stegen S, van Gastel N et al (2017) Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. BiomaterialsGoogle Scholar
  47. 47.
    Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRefPubMedGoogle Scholar
  48. 48.
    Henriksen EL, Carlsen JF, Vejborg IM et al (2018) The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiol:028418511877091.
  49. 49.
    Bueno G, Fernández-Carrobles MM, Deniz O, García-Rojo M (2016) New trends of emerging technologies in digital pathology. Pathobiology 83:61–69CrossRefPubMedGoogle Scholar
  50. 50.
    Sengle G, Tufa SF, Sakai LY, Zulliger MA, Keene DR (2013) A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system. J Histochem Cytochem 61:263–271CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Scott AE, Vasilescu DM, Seal KAD, Keyes SD, Mavrogordato MN, Hogg JC, Sinclair I, Warner JA, Hackett TL, Lackie PM (2015) Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography. PLoS One 10:e0126230CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Handschuh S, Baeumler N, Schwaha T, Ruthensteiner B (2013) A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario. Front Zool 10:44CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Khimchenko A, Deyhle H, Schulz G, Schweighauser G, Hench J, Chicherova N, Bikis C, Hieber SE, Müller B (2016) Extending two-dimensional histology into the third dimension through conventional micro computed tomography. NeuroImage 139:26–36CrossRefPubMedGoogle Scholar
  54. 54.
    Martin S, Lazzarini M, Dullin C, Balakrishnan S, Gomes FV, Ninkovic M, el Hady A, Pardo LA, Stühmer W, del-Bel E (2017) SK3 channel overexpression in mice causes hippocampal shrinkage associated with cognitive impairments. Mol Neurobiol 54:1078–1091CrossRefPubMedGoogle Scholar
  55. 55.
    Albers J, Markus MA, Alves F, Dullin C (2018) X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Sci Rep 8:7712CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bidola P, Morgan K, Willner M et al (2017) Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval. J Microsc 266:211–220CrossRefPubMedGoogle Scholar
  57. 57.
    Hainfeld J, Slatkin D, Focella T, Smilowitz H (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253CrossRefPubMedGoogle Scholar
  58. 58.
    Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomedicine Biotechnol 44:410–422CrossRefGoogle Scholar
  59. 59.
    Metscher BD, Müller GB (2011) MicroCT for molecular imaging: quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Dev Dyn 240:2301–2308CrossRefPubMedGoogle Scholar
  60. 60.
    Krenkel M, Markus A, Bartels M, Dullin C, Alves F, Salditt T (2015) Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs. Sci Rep 5:9973CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, Chauveau F, Cho TH, Nighoghossian N, Berthezène Y, Peyrin F, Wiart M (2013) Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain. Mol Imaging Biol 15:552–559CrossRefPubMedGoogle Scholar
  62. 62.
    Rositi H, Frindel C, Langer M, Wiart M, Olivier C, Peyrin F, Rousseau D (2013) Information-based analysis of X-ray in-line phase tomography with application to the detection of iron oxide nanoparticles in the brain. Opt Express 21:27185–27196CrossRefPubMedGoogle Scholar
  63. 63.
    Astolfo A, Arfelli F, Schültke E, James S, Mancini L, Menk RH (2013) A detailed study of gold-nanoparticle loaded cells using X-ray based techniques for cell-tracking applications with single-cell sensitivity. Nanoscale 5:3337–3345CrossRefPubMedGoogle Scholar
  64. 64.
    Schültke E, Menk R, Pinzer B, Astolfo A, Stampanoni M, Arfelli F, Harsan LA, Nikkhah G (2014) Single-cell resolution in high-resolution synchrotron X-ray CT imaging with gold nanoparticles. J Synchrotron Radiat 21:242–250CrossRefPubMedGoogle Scholar
  65. 65.
    Jain S, Hirst D, O’sullivan J (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Adam J-F, Nemoz C, Bravin A, Fiedler S, Bayat S, Monfraix S, Berruyer G, Charvet AM, Bas JFL, Elleaume H, Estève F (2005) High-resolution blood–brain barrier permeability and blood volume imaging using quantitative synchrotron radiation computed tomography: study on an F98 rat brain glioma. J Cereb Blood Flow Metab 25:145–153CrossRefPubMedGoogle Scholar
  67. 67.
    Tang W, Huang S, Du L et al (2018) Expression of HMGB1 in maternal exposure to fine particulate air pollution induces lung injury in rat offspring assessed with micro-CT. Chem Biol Interact 280:64–69CrossRefPubMedGoogle Scholar
  68. 68.
    Ritman EL, Dunsmuir JH, Faridani A et al (1997) Local reconstruction applied to x-ray microtomography. In: Inverse problems in wave propagation. Springer, pp 443–452Google Scholar
  69. 69.
    van de Kamp T, dos Santos Rolos T, Baumbach T, Krogmann L (2014) Scanning the past–synchrotron X-ray microtomography of fossil wasps in amber. Entomol Heute 26:150–160Google Scholar
  70. 70.
    Dullin C, Albers J, Tromba G, Andrä M, Ramilli M, Bergamaschi A (2018) MÖNCH detector enables fast and low-dose free-propagation phase-contrast computed tomography of in situ mouse lungs. J Synchrotron Radiat 25:565–569CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Grabherr S, Stephan B, Buck U et al (2007) Virtopsy–radiology in forensic medicine. Imaging Decis MRI 11:2–9CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.Institute for Diagnostic and Interventional RadiologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  3. 3.Elettra Sincrotrone TriesteTriesteItaly
  4. 4.Translational Molecular ImagingMax-Planck-Institute for Experimental MedicineGöttingenGermany
  5. 5.Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1BronFrance
  6. 6.Department of Imaging and Pathology, Faculty of MedicineKU Leuven—University of LeuvenLeuvenBelgium

Personalised recommendations