Skip to main content
Log in

The Complexity and Fractal Geometry of Nuclear Medicine Images

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Irregularity in shape and behavior is the main feature of every anatomical system, including human organs, tissues, cells, and sub-cellular entities. It has been shown that this property cannot be quantified by means of the classical Euclidean geometry, which is only able to describe regular geometrical objects. In contrast, fractal geometry has been widely applied in several scientific fields. This rapid growth has also produced substantial insights in the biomedical imaging. Consequently, particular attention has been given to the identification of pathognomonic patterns of “shape” in anatomical entities and their changes from natural to pathological states. Despite the advantages of fractal mathematics and several studies demonstrating its applicability to oncological research, many researchers and clinicians remain unaware of its potential. Therefore, this review aims to summarize the complexity and fractal geometry of nuclear medicine images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Kane EA, Higham TE (2015) Complex systems are more than the sum of their parts: using integration to understand performance, biomechanics, and diversity. Integr Comp Biol 55:146–165

    Article  Google Scholar 

  2. Grizzi F, Chiriva-Internati M (2005) The complexity of anatomical systems. Theor Biol Med Model 19:2–26

    Google Scholar 

  3. Simon AH (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482

    Google Scholar 

  4. Di Ieva A, Grizzi F, Jelinek H et al (2014) Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist 20:403–417

    Article  Google Scholar 

  5. Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26

    Article  Google Scholar 

  6. Sargut G, McGrath RG (2011) Learning to live with complexity. Harv Bus Rev 89(68–76):136

    Google Scholar 

  7. Losa GA (2009) The fractal geometry of life. Riv Biol 102:29–59

    PubMed  Google Scholar 

  8. Losa GA (2002) Fractal morphometry of cell complexity. Riv Biol 95:239–258

    PubMed  Google Scholar 

  9. Bianciardi G (2015) Differential diagnosis. Shape and function, fractal tools in the pathology lab. Nonlinear Dynamics Psychol Life Sci 19:437–464

    PubMed  Google Scholar 

  10. Losa GA, Nonnenmacher TF (1996) Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol 9:174–182

    CAS  PubMed  Google Scholar 

  11. Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R (2015) Lung cancer—a fractal viewpoint. Nat Rev Clin Oncol 12:664–675

    Article  Google Scholar 

  12. Di Ieva A, Esteban FJ, Grizzi F et al (2015) Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist 21:30–43

    Article  Google Scholar 

  13. Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS, Kim SI (2006) Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp 27:994–1003

    Article  Google Scholar 

  14. Gadde SG, Anegondi N, Bhanushali D et al (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57:246–252

    Article  CAS  Google Scholar 

  15. Noujaim SF, Berenfeld O, Kalifa J, Cerrone M, Nanthakumar K, Atienza F, Moreno J, Mironov S, Jalife J (2007) Universal scaling law of electrical turbulence in the mammalian heart. Proc Natl Acad Sci U S A 104:20985–20989

    Article  CAS  Google Scholar 

  16. Goldberger AL (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol Sci 6:87–91

    CAS  PubMed  Google Scholar 

  17. Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638

    Article  CAS  Google Scholar 

  18. Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40:8783–8792

    Article  CAS  Google Scholar 

  19. Glenny RW, Robertson HT, Yamashiro S, Bassingthwaighte JB (1991) Applications of fractal analysis to physiology. J Appl Physiol 70:2351–2367

    Article  CAS  Google Scholar 

  20. Liebovitch LS, Todorov AT (1996) Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit Rev Neurobiol 10:169–187

    Article  CAS  Google Scholar 

  21. West BJ (2010) Fractal physiology and the fractional calculus: a perspective. Front Physiol 14:1–12

    Google Scholar 

  22. Cross SS (1997) Fractals in pathology. J Pathol 182:1–8

    Article  CAS  Google Scholar 

  23. Smith TG Jr, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136

    Article  Google Scholar 

  24. Grizzi F, Russo C, Colombo P et al (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 8:5–14

    Google Scholar 

  25. Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos, Solitons Fractals 6:171–201

    Article  CAS  Google Scholar 

  26. Grizzi F, Colombo P, Taverna G, Chiriva-Internati M, Cobos E, Graziotti P, Muzzio PC, Dioguardi N (2007) Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohistochem Mol Morphol 15:134–139

    Article  Google Scholar 

  27. Captur G, Karperien AL, Li C et al (2015) Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 7:17–80

    Google Scholar 

  28. Lorthois S, Cassot F (2010) Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol 262:614–633

    Article  Google Scholar 

  29. Moal F, Chappard D, Wang J et al (2002) Fractal dimension can distinguish models and pharmacologic changes in liver fibrosis in rats. Hepatology 36:840–849

    Article  Google Scholar 

  30. Rajkovic K, Bacic G, Ristanovic D, Milosevic NT (2014) Mathematical model of neuronal morphology: prenatal development of the human dentate nucleus. Biomed Res Int 2014:812351

    Article  Google Scholar 

  31. Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology using modified box-counting method. Neurosci Res 84:64–67

    Article  Google Scholar 

  32. Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology of rotated neuronal pictures: the modified box counting method. Theor Biol Forum 107:109–121

    PubMed  Google Scholar 

  33. Tambasco M, Magliocco AM (2008) Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol 39:740–746

    Article  Google Scholar 

  34. Liebovitch LS, Toth TI (1990) Fractal activity in cell membrane ion channels. Ann N Y Acad Sci 591:375–391

    Article  CAS  Google Scholar 

  35. Dioguardi N, Grizzi F, Fiamengo B, Russo C (2008) Metrically measuring liver biopsy: a chronic hepatitis B and C computer-aided morphologic description. World J Gastroenterol 14:7335–7344

    Article  Google Scholar 

  36. Grizzi F, Russo C, Franceschini B, di Rocco M, Torri V, Morenghi E, Fassati LR, Dioguardi N (2006) Sampling variability of computer-aided fractal-corrected measures of liver fibrosis in needle biopsy specimens. World J Gastroenterol 12:7660–7665

    Article  Google Scholar 

  37. Dioguardi N, Grizzi F, Franceschini B, Bossi P, Russo C (2006) Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Hurst’s exponent. World J Gastroenterol 12:2187–2194

    Article  Google Scholar 

  38. Dioguardi N, Franceschini B, Aletti G, Russo C, Grizzi F (2003) Fractal dimension rectified meter for quantification of liver fibrosis and other irregular microscopic objects. Anal Quant Cytol Histol 25:312–320

    PubMed  Google Scholar 

  39. Dioguardi N, Grizzi F, Bossi P, Roncalli M (1999) Fractal and spectral dimension analysis of liver fibrosis in needle biopsy specimens. Anal Quant Cytol Histol 21:262–266

    CAS  PubMed  Google Scholar 

  40. Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108:547–551

    CAS  PubMed  Google Scholar 

  41. Kikuchi A, Kozuma S, Yasugi T, Taketani Y (2004) Fractal analysis of surface growth patterns in endometrioid endometrial adenocarcinoma. Gynecol Obstet Investig 58:61–67

    Article  Google Scholar 

  42. Lee LH, Tambasco M, Otsuka S, Wright A, Klimowicz A, Petrillo S, Morris D, Magliocco A, Bebb DG (2014) Digital differentiation of non-small cell carcinomas of the lung by the fractal dimension of their epithelial architecture. Micron 67:125–131

    Article  Google Scholar 

  43. Vasiljevic J, Reljin B, Sopta J, Mijucic V, Tulic G, Reljin I (2012) Application of multifractal analysis on microscopic images in the classification of metastatic bone disease. Biomed Microdevices 14:541–548

    Article  Google Scholar 

  44. Di Ieva A, Grizzi F, Tschabitscher M et al (2010) Correlation of microvascular fractal dimension with positron emission tomography [11C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80:267–273

    Article  Google Scholar 

  45. Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13:719–735

    Article  CAS  Google Scholar 

  46. Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 29:1109–1113

    Article  CAS  Google Scholar 

  47. Misteli T (2010) Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2(8):a000794

    Article  Google Scholar 

  48. Irinopoulou T, Rigaut JP, Benson MC (1993) Toward objective prognostic grading of prostatic carcinoma using image analysis. Anal Quant Cytol Histol 15:341–344

    CAS  PubMed  Google Scholar 

  49. Streba CT, Pirici D, Vere CC, Mogoantă L, Comănescu V, Rogoveanu I (2011) Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Romanian J Morphol Embryol 52:845–854

    CAS  Google Scholar 

  50. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    CAS  PubMed  Google Scholar 

  51. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP, Schwartz LH, Zucca E, Fisher RI, Trotman J, Hoekstra OS, Hicks RJ, O'Doherty MJ, Hustinx R, Biggi A, Cheson BD (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058

    Article  Google Scholar 

  52. Dimitrakopoulou-Strauss A (2015) PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol 11:1083–1091

    Article  CAS  Google Scholar 

  53. Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJJ, Devill WLJM (2001) Systematic review of the diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91:1530–1542

    Article  CAS  Google Scholar 

  54. Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, Guimaraes AR, Filice R, Zhang Z, Sullivan DC, QIBA Terminology Working Group (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24:9–26

    Article  Google Scholar 

  55. Michallek F, Dewey M (2014) Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol 24:60–69

    Article  Google Scholar 

  56. Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, Koizumi M, Sasaki M (2014) FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol 83:715–719

    Article  Google Scholar 

  57. Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Mäcke HR, Haberkorn U, Strauss LG (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using 68Ga-DOTATOC PET and comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 33:823–830

    Article  Google Scholar 

  58. Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med 42:248–256

    CAS  PubMed  Google Scholar 

  59. Breki CM, Dimitrakopoulou-Strauss A, Hassel J, Theoharis T, Sachpekidis C, Pan L, Provata A (2016) Fractal and multifractal analysis of PET/CT images of metastatic melanoma before and after treatment with ipilimumab. EJNMMI Res 6:61

    Article  Google Scholar 

  60. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42:713–720

    CAS  PubMed  Google Scholar 

  61. Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG (2009) Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hell J Nucl Med 12:223–228

    PubMed  Google Scholar 

  62. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Rühl A, Irngartinger G, Stremmel W, Rudi J (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45:1480–1487

    CAS  PubMed  Google Scholar 

  63. Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A (2006) Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:1115–1122

    Article  CAS  Google Scholar 

  64. Sachpekidis C, Kopka K, Eder M et al (2016) 68Ga-PSMA-11 dynamic PET/CT imaging in primary prostate cancer. Clin Nucl Med 41:e473–e479

    Article  Google Scholar 

  65. Sachpekidis C, Baumer P, Kopka K et al (2018) 68Ga-PSMA PET/CT in the evaluation of bone metastases in prostate cancer. Eur J Nucl Med Mol Imaging 45:904–912. https://doi.org/10.1007/s00259-018-3936-0

    Article  CAS  PubMed  Google Scholar 

  66. Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, Dimitrakopoulou-Strauss A (2017) Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging 44:50–62

    Article  CAS  Google Scholar 

  67. Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34:576–584

    Article  Google Scholar 

  68. Ben Bouallegue F, Tabaa YA, Kafrouni M et al (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619

    Article  Google Scholar 

  69. Tochigi T, Shuto K, Kono T, Ohira G, Tohma T, Gunji H, Hayano K, Narushima K, Fujishiro T, Hanaoka T, Akutsu Y, Okazumi S, Matsubara H (2017) Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Dig Surg 34:186–191

    Article  CAS  Google Scholar 

  70. Lopci E, Grizzi F, Russo C, Toschi L, Grassi I, Cicoria G, Lodi F, Mattioli S, Fanti S (2017) Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT: a pilot study on semiquantitative and computer-aided fractal geometry analysis. Nucl Med Commun 38:340–346

    Article  Google Scholar 

  71. Kuikka JT, Tiihonen J, Karhu J et al (1997) Fractal analysis of striatal dopamine re-uptake sites. Eur J Nucl Med Mol Imaging 24:1085–1090

    CAS  Google Scholar 

  72. Kuikka JT, Hartikainen P (2000) Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 39:37–42

    Article  CAS  Google Scholar 

  73. Lee JS, Lee DS, Park KS, Chung JK, Lee MC (2004) Changes in the heterogeneity of cerebral glucose metabolism with healthy aging: quantitative assessment by fractal analysis. J Neuroimaging 14:350–356

    Article  CAS  Google Scholar 

  74. Venegas JG, Galletti GG (2000) Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow. J Appl Physiol 88:1365–1373

    Article  CAS  Google Scholar 

  75. Kalliokoski KK, Kuusela TA, Nuutila P, Tolvanen T, Oikonen V, Teräs M, Takala TES, Knuuti J (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med Mol Imaging 28:450–456

    Article  CAS  Google Scholar 

  76. Kalliokoski KK, Kuusela TA, Laaksonen MS, Knuuti J, Nuutila P (2003) Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men. J Physiol 546:529–535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The “Michele Rodriguez” Foundation is acknowledged for the scientific support.

Funding

The Italian Association for Research on Cancer (AIRC—Associazione Italiana per la Ricerca sul Cancro) provided financial support for the research with the grant no. 18923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egesta Lopci.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grizzi, F., Castello, A., Qehajaj, D. et al. The Complexity and Fractal Geometry of Nuclear Medicine Images. Mol Imaging Biol 21, 401–409 (2019). https://doi.org/10.1007/s11307-018-1236-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1236-5

Key words

Navigation