Advertisement

Molecular Imaging and Biology

, Volume 21, Issue 3, pp 473–481 | Cite as

SPECT/CT Imaging of Mycobacterium tuberculosis Infection with [125I]anti-C3d mAb

  • Catherine A. FossEmail author
  • Liudmila Kulik
  • Alvaro A. Ordonez
  • Sanjay K. Jain
  • V. Michael Holers
  • Joshua M. Thurman
  • Martin G. Pomper
Research Article

Abstract

Purpose

Diagnosis and therapeutic monitoring of chronic bacterial infection requires methods to detect and localize sites of infection accurately. Complement C3 activation fragments are generated and covalently bound to selective bacterial pathogens during the immune response and can serve as biomarkers of ongoing bacterial infection. We have developed several probes for detecting tissue-bound C3 deposits, including a monoclonal antibody (mAb 3d29) that recognizes the tissue-bound terminal processing fragments iC3b and C3d but does not recognize native circulating C3 or tissue-bound C3b.

Procedures

To determine whether mAb 3d29 could be used to detect chronic Mycobacterium tuberculosis infection non-invasively, aerosol-infected female C3HeB/FeJ mice were injected with [125I]3d29 mAb and either imaged using single-photon emission computed tomography (SPECT)/X-ray computed tomography (CT) imaging at 24 and 48 h after radiotracer injection or being subjected to biodistribution analysis.

Results

Discrete lesions were detected by SPECT/CT imaging in the lungs and spleens of infected mice, consistent with the location of granulomas in the infected animals as detected by CT. Low-level signal was seen in the spleens of uninfected mice and no signal was seen in the lungs of healthy mice. Immunofluorescence microscopy revealed that 3d29 in the lungs of infected mice co-localized with aggregates of macrophages (detected with anti-CD68 antibodies). 3d29 was detected in the cytoplasm of macrophages, consistent with the location of internalized M. tuberculosis. 3d29 was also present within alveolar epithelial cells, indicating that it detected M. tuberculosis phagocytosed by other CD68-positive cells. Healthy controls showed very little retention of fluorescent or radiolabeled antibody across tissues. Radiolabeled 3d29 compared with radiolabeled isotype control showed a 3.5:1 ratio of increased uptake in infected lungs, indicating specific uptake by 3d29.

Conclusion

3d29 can be used to detect and localize areas of infection with M. tuberculosis non-invasively by 24 h after radiotracer injection and with high contrast.

Key words

TB Complement 3d C3d SPECT/CT Infection imaging Host response 

Notes

Acknowledgements

We would like to acknowledge Mariah Klunk for operating the scanner.

Funding Information

The authors would like to acknowledge funding from the following sources: JHU Musculoskeletal Research Award (CAF), R01 EB020539 (SKJ), P41 EB024495 (MGP), The Stabler Foundation (MGP), and the Alliance for Lupus Research (VMH).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2018_1228_MOESM1_ESM.pdf (658 kb)
ESM 1 (PDF 657 kb)

References

  1. 1.
    WHO Global tuberculosis report 2016. http://www.who.int/tb/publications/global_report/gtbr2016_executive_summary.pdf?ua=1 (accessed December 29, 2016).
  2. 2.
    VanderVen BC, Huang L, Rohde KH, Russell DG (2016) The minimal unit of infection: mycobacterium tuberculosis in the macrophage. Microbiol Spectr 4. doi: 10.1128/microbiolspec.TBTB2-0025-2016Google Scholar
  3. 3.
    Mace LS (1908) Review of recent work on tuberculosis. Cal State J Med 6:298–301Google Scholar
  4. 4.
    Freund A (1946) Tuberculosis and non-tuberculous lung diseases: a critical review of the literature of the last years. Acta Med Orient 5:305–315Google Scholar
  5. 5.
    Mathe CP (1946) Unilateral renal tuberculosis; management of the nephrectomized patient: review of ninety-eight cases. Trans West Sect Am Urol Assoc 13:31–38Google Scholar
  6. 6.
    Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part II: role in immunity. Front Immunol 6: doi: 10.3389/fimmu.2015.00257Google Scholar
  7. 7.
    Bergmann-Leitner ES, Leitner WW, Tsokos GC (2006) Complement 3d: from molecular adjuvant to target of immune escape mechanisms. Clin Immunol 121:177–185CrossRefGoogle Scholar
  8. 8.
    Gou SJ, Yuan J, Wang C, Zhao MH, Chen M (2013) Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin J Am Soc Nephrol 8:1884–1891CrossRefGoogle Scholar
  9. 9.
    Thurman JM, Kulik L, Orth H, Wong M, Renner B, Sargsyan SA, Mitchell LM, Hourcade DE, Hannan JP, Kovacs JM, Coughlin B, Woodell AS, Pickering MC, Rohrer B, Holers VM (2013) Detection of complement activation using monoclonal antibodies against C3d. J Clin Invest 123:2218–2230CrossRefGoogle Scholar
  10. 10.
    Borschukova O, Paz Z, Ghiran IC, Liu CC, Kao AH, Manzi S, Ahearn JM, Tsokos GC (2012) Complement fragment C3d is colocalized within the lipid rafts of T cells and promotes cytokine production. Lupus 21:1294–1304CrossRefGoogle Scholar
  11. 11.
    Sargsyan SA, Serkova NJ, Renner B, Hasebroock KM, Larsen B, Stoldt C, McFann K, Pickering MC, Thurman JM (2012) Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int 81:152–159CrossRefGoogle Scholar
  12. 12.
    Wouters D, Wiessenberg HD, Hart M, Bruins P, Voskuyl A, Daha MR, Hack CE (2005) Complexes between C1q and C3 or C4: novel and specific markers for classical complement pathway activation. J Immunol Methods 298:35–45CrossRefGoogle Scholar
  13. 13.
    Ristau T, Paun C, Ersoy L, Hahn M, Lechanteur Y, Hoyng C, de Jong EK, Daha MR, Kirchhof B, den Hollander AI, Fauser S (2014) Impact of the common genetic associations of age-related macular degeneration upon systemic complement component C3d levels. PLoS One 9:e93459CrossRefGoogle Scholar
  14. 14.
    Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL, Jain SK (2012) Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 205:595–602CrossRefGoogle Scholar
  15. 15.
    Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK (2016) Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis Models Mech 9:779–788CrossRefGoogle Scholar
  16. 16.
    Haisma HJ, Hilgers J, Zurawski VR Jr (1986) Iodination of monoclonal antibodies for diagnosis and radiotherapy using a convenient one vial method. J Nucl Med 27:1890–1895Google Scholar
  17. 17.
    Weinstein EA, Liu L, Ordonez AA, Wang H, Hooker JM, Tonge PJ, Jain SK (2012) Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 56:6284–6290CrossRefGoogle Scholar
  18. 18.
    Vaidyanathan G, Zalutsky MR (1990) Radioiodination of antibodies via N-succinimidyl 2,4-dimethoxy-3-(trialkylstannyl)benzoates. Bioconjug Chem 1:387–393CrossRefGoogle Scholar
  19. 19.
    Hnatowich DJ (1990) Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium. Semin Nucl Med 20:80–91CrossRefGoogle Scholar
  20. 20.
    Turner CJ, Sykes TR, Longenecker BM, Noujaim AA (1988) Comparative radiolabeling and distribution of a tumour-directed monoclonal antibody. Int J Rad Appl Instrum B 15:701–706CrossRefGoogle Scholar
  21. 21.
    Garg PK, Alston KL, Welsh PC, Zalutsky MR (1996) Enhanced binding and inertness to dehalogenation of alpha-melanotropic peptides labeled using N-succinimidyl 3-iodobenzoate. Bioconjug Chem 7:233–239CrossRefGoogle Scholar
  22. 22.
    Leiter EH (1988) Control of spontaneous glucose intolerance, hyperinsulinemia, and islet hyperplasia in nonobese C3H.SW male mice by Y-linked locus and adrenal gland. Metabolism 37:689–696CrossRefGoogle Scholar
  23. 23.
    Stanton LA, Fenhalls G, Lucas A, Gough P, Greaves DR, Mahoney JA, Helden Pv, Gordon S (2003) Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis. Int J Exp Pathol 84:289–304CrossRefGoogle Scholar
  24. 24.
    Scordo JM, Knoell DL, Torrelles JB (2016) Alveolar epithelial cells in Mycobacterium tuberculosis infection: active players or innocent bystanders? J Innate Immun 8:3–14CrossRefGoogle Scholar
  25. 25.
    Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2:33–46CrossRefGoogle Scholar
  26. 26.
    Renner B, Strassheim D, Amura CR, Kulik L, Ljubanovic D, Glogowska MJ, Takahashi K, Carroll MC, Holers VM, Thurman JM (2010) B cell subsets contribute to renal injury and renal protection after ischemia/reperfusion. J Immunol 185:4393–4400CrossRefGoogle Scholar
  27. 27.
    Petrik M, Zhai C, Novy Z, Urbanek L, Haas H, Decristoforo C (2016) In vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol Imaging Biol 18:344–352CrossRefGoogle Scholar
  28. 28.
    Zhai C, Summer D, Rangger C, Haas H, Haubner R, Decristoforo C (2015) Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with gallium-68. J Label Compd Radiopharm 58:209–214CrossRefGoogle Scholar
  29. 29.
    Petrik M, Franssen GM, Haas H, Laverman P, Hörtnagl C, Schrettl M, Helbok A, Lass-Flörl C, Decristoforo C (2012) Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 39:1175–1183CrossRefGoogle Scholar
  30. 30.
    Petrik M, Haas H, Dobrozemsky G, Lass-Florl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C (2010) 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med 51:639–645CrossRefGoogle Scholar
  31. 31.
    Sakamuri RM, Capek P, Dickerson TJ, Barry CE III, Mukundan H, Swanson BI (2014) Detection of stealthy small amphiphilic biomarkers. J Microbiol Methods 103:112–117CrossRefGoogle Scholar
  32. 32.
    Park S, Hong YK, Joo SH, Choe KO, Cho SH (1999) CT findings of pulmonary tuberculosis presenting as segmental consolidation. J Comput Assist Tomogr 23:736–742CrossRefGoogle Scholar
  33. 33.
    Brizi MG, Celi G, Scaldazza AV, Barbaro B (1998) Diagnostic imaging of abdominal tuberculosis: gastrointestinal tract, peritoneum. Lymph Nodes Rays 23:115–125Google Scholar
  34. 34.
    Sharif HS, Morgan JL, al Shahed MS, al Thagafi MY (1995) Role of CT and MR imaging in the management of tuberculous spondylitis. Radiol Clin N Am 33:787–804Google Scholar
  35. 35.
    Kuhlman JE, Deutsch JH, Fishman EK, Siegelman SS (1990) CT features of thoracic mycobacterial disease. Radiographics 10:413–431CrossRefGoogle Scholar
  36. 36.
    Ankrah AO, van der Werf TS, de Vries EF et al (2016) PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging 4:131–144CrossRefGoogle Scholar
  37. 37.
    Balogova S, Talbot JN, Nataf V, Michaud L, Huchet V, Kerrou K, Montravers F (2013) 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 40:943–966CrossRefGoogle Scholar
  38. 38.
    Kosterink JG (2011) Positron emission tomography in the diagnosis and treatment management of tuberculosis. Curr Pharm Des 17:2875–2880CrossRefGoogle Scholar
  39. 39.
    Davis SL, Nuermberger EL, Um PK, Vidal C, Jedynak B, Pomper MG, Bishai WR, Jain SK (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53:4879–4884CrossRefGoogle Scholar
  40. 40.
    Murawski AM, Gurbani S, Harper JS, Klunk M, Younes L, Jain SK, Jedynak BM (2014) Imaging the evolution of reactivation pulmonary tuberculosis in mice using 18F-FDG PET. J Nucl Med 55:1726–1729CrossRefGoogle Scholar
  41. 41.
    Gambhir S, Ravina M, Rangan K, Dixit M, Barai S, Bomanji J, International Atomic Energy Agency Extra-pulmonary TB Consortium (2017) Imaging in extrapulmonary tuberculosis. Int J Infect Dis 56:237–247CrossRefGoogle Scholar
  42. 42.
    Sathekge M, Maes A, D'Asseler Y, Vorster M, Van de Wiele C (2012) Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals. Nucl Med Commun 33:581–590CrossRefGoogle Scholar
  43. 43.
    Vorster M, Sathekge MM, Bomanji J (2014) Advances in imaging of tuberculosis: the role of 18F-FDG PET and PET/CT. Curr Opin Pulm Med 20:287–293CrossRefGoogle Scholar
  44. 44.
    Cooke SG, Davies ER, Goddard PR (1989) Pulmonary uptake in 67-gallium citrate scintigraphy-the ‘negative heart’ sign. Postgrad Med J 65:885–891CrossRefGoogle Scholar
  45. 45.
    Davis SL, Be NA, Lamichhane G, Nimmagadda S, Pomper MG, Bishai WR, Jain SK (2009) Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One 4:e6297CrossRefGoogle Scholar
  46. 46.
    Gowrishankar G, Namavari M, Jouannot EB, Hoehne A, Reeves R, Hardy J, Gambhir SS (2014) Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS One 9:e107951CrossRefGoogle Scholar
  47. 47.
    Boegemann M, Schrader AJ, Krabbe LM, Herrmann E (2015) Present, emerging and possible future biomarkers in castration resistant prostate cancer (CRPC). Curr Cancer Drug Targets 15:243–255CrossRefGoogle Scholar
  48. 48.
    Weinstein EA, Ordonez AA, DeMarco VP et al (2014) Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med 6:259ra146CrossRefGoogle Scholar
  49. 49.
    Jain SK (2017) The promise of molecular imaging in the study and treatment of infectious diseases. Mol Imaging Biol 19:341–347CrossRefGoogle Scholar
  50. 50.
    Ordonez AA, Weinstein EA, Bambarger LE, Saini V, Chang YS, DeMarco VP, Klunk MH, Urbanowski ME, Moulton KL, Murawski AM, Pokkali S, Kalinda AS, Jain SK (2017) A systematic approach for developing bacteria-specific imaging tracers. J Nucl Med 58:144–150CrossRefGoogle Scholar
  51. 51.
    Ordonez AA, DeMarco VP, Klunk MH et al (2015) Imaging chronic tuberculous lesions using sodium [18F]fluoride positron emission tomography in mice. Mol Imaging Biol 17:609–614CrossRefGoogle Scholar
  52. 52.
    Ahmadihosseini H, Abedi J, Ghodsi Rad MA, Zakavi SR, Knoll P, Mirzaei S, Sadeghi R (2014) Diagnostic utility of 99mTc-EDDA-tricine-HYNIC-Tyr3-octreotate SPECT for differentiation of active from inactive pulmonary tuberculosis. Nucl Med Commun 35:1262–1267CrossRefGoogle Scholar
  53. 53.
    Foss CA, Harper JS, Wang H, Pomper MG, Jain SK (2013) Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis 208:2067–2074CrossRefGoogle Scholar
  54. 54.
    Ordonez AA, Pokkali S, DeMarco VP et al (2015) Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59:642–649CrossRefGoogle Scholar
  55. 55.
    Songane M, Kleinnijenhuis J, Netea MG, van Crevel R (2012) The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 92:388–396CrossRefGoogle Scholar
  56. 56.
    Deretic V, Singh S, Master S, Harris J, Roberts E, Kyei G, Davis A, de Haro S, Naylor J, Lee HH, Vergne I (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8:719–727CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreUSA
  2. 2.Center for Infection and Inflammation Imaging Research, Department of PediatricsJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of MedicineUniversity of Colorado DenverAuroraUSA

Personalised recommendations