Molecular Imaging and Biology

, Volume 20, Issue 5, pp 705–715 | Cite as

Emerging Intraoperative Imaging Modalities to Improve Surgical Precision

  • Israt S. Alam
  • Idan Steinberg
  • Ophir Vermesh
  • Nynke S. van den Berg
  • Eben L. Rosenthal
  • Gooitzen M. van Dam
  • Vasilis Ntziachristos
  • Sanjiv S. Gambhir
  • Sophie Hernot
  • Stephan Rogalla
Review Article


Intraoperative imaging (IOI) is performed to guide delineation and localization of regions of surgical interest. While oncological surgical planning predominantly utilizes x-ray computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US), intraoperative guidance mainly remains on surgeon interpretation and pathology for confirmation. Over the past decades however, intraoperative guidance has evolved significantly with the emergence of several novel imaging technologies, including fluorescence-, Raman, photoacoustic-, and radio-guided approaches. These modalities have demonstrated the potential to further optimize precision in surgical resection and improve clinical outcomes for patients. Not only can these technologies enhance our understanding of the disease, they can also yield large imaging datasets intraoperatively that can be analyzed by deep learning approaches for more rapid and accurate pathological diagnosis. Unfortunately, many of these novel technologies are still under preclinical or early clinical evaluation. Organizations like the Intra-Operative Imaging Study Group of the European Society for Molecular Imaging (ESMI) support interdisciplinary interactions with the aim to improve technical capabilities in the field, an approach that can succeed only if scientists, engineers, and physicians work closely together with industry and regulatory bodies to resolve roadblocks to clinical translation. In this review, we provide an overview of a variety of novel IOI technologies, discuss their challenges, and present future perspectives on the enormous potential of IOI for oncological surgical navigation.

Key words

Intraoperative imaging Surgical navigation Image-guided surgery Fluorescence imaging Raman spectrometry Photoacoustic imaging Optoacoustic imaging Thermoacoustic imaging Radio-guided surgery Deep learning 



We gratefully thank the European Society for Molecular Imaging for their support and the possibility of establishing a study group for Intraoperative Imaging as a platform for scientific exchange within the society and beyond.

Author Contributions

All authors wrote, reviewed and approved the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Prince AC, McGee AS, Siegel H, Rosenthal EL, Behnke NK, Warram JM (2017) Evaluation of fluorescence-guided surgery agents in a murine model of soft tissue fibrosarcoma. J Surg Oncol :1–9.
  2. 2.
    Rana M, Zapf A, Kuehle M, Gellrich NC, Eckardt AM (2012) Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: a prospective randomized diagnostic study. Eur J Cancer Prev 21:460–466CrossRefPubMedGoogle Scholar
  3. 3.
    James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965CrossRefPubMedGoogle Scholar
  4. 4.
    Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128CrossRefPubMedGoogle Scholar
  5. 5.
    Scheuer W, van Dam GM, Dobosz M, Set a (2012) Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med 4:134ps11CrossRefPubMedGoogle Scholar
  6. 6.
    Koch M, Ntziachristos V (2016) Advancing surgical vision with fluorescence imaging. Annu Rev Med 67:153–164CrossRefPubMedGoogle Scholar
  7. 7.
    AV DS, Lin H, Henderson ER et al (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901CrossRefGoogle Scholar
  8. 8.
    Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL (2017) Optical surgical navigation for precision in tumor resections. Mol Imaging Biol 19:357–362CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mondal SB, Gao S, Zhu N et al (2015) Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep 5:12117CrossRefPubMedGoogle Scholar
  10. 10.
    Ringhausen E, Wang T, Pitts J, Sarder P, Akers WJ (2016) Evaluation of dynamic optical projection of acquired luminescence for sentinel lymph node biopsy in large animals. Technol Cancer Res Treat 15:787–795CrossRefPubMedGoogle Scholar
  11. 11.
    Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101CrossRefGoogle Scholar
  12. 12.
    Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schaafsma BE, Mieog JS, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tummers QR, Hoogstins CE, Peters AA et al (2015) The value of intraoperative near-infrared fluorescence imaging based on enhanced permeability and retention of Indocyanine green: feasibility and false-positives in ovarian cancer. PLoS One 10(6):e0129766. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMedGoogle Scholar
  16. 16.
    Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, Soloway MS, Karl A, Burger M (2012) Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 188:58–62CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Boonstra MC, Prakash J, Van De Velde CJ et al (2015) Stromal targets for fluorescent-guided oncologic surgery. Front Oncol 5:254CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kijanka MM, van Brussel AS, van der Wall E et al (2016) Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res 6:14CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee A, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319CrossRefPubMedGoogle Scholar
  20. 20.
    Nagaya T, Nakamura YA, Choyke PL, Kobayashi H (2017) Fluorescence-guided surgery. Front Oncol 7:314CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rosenthal EL, Moore LS, Tipirneni K, de Boer E, Stevens TM, Hartman YE, Carroll WR, Zinn KR, Warram JM (2017) Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res 23:4744–4752CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, Linssen MD, Jorritsma-Smit A, van Oosten M, Nagengast WB, Ntziachristos V, van Dam GM (2016) Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 1:283–290CrossRefPubMedGoogle Scholar
  24. 24.
    Lamberts LE, Koch M, de Jong JS et al (2016) Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res 23:2730–2741CrossRefPubMedGoogle Scholar
  25. 25.
    Warram JM, de Boer E, van Dam GM, Moore LS, Bevans SL, Walsh EM, Young ES, Carroll WR, Stevens TM, Rosenthal EL (2016) Fluorescence imaging to localize head and neck squamous cell carcinoma for enhanced pathological assessment. J Pathol Clin Res 2:104–112CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Elliott JT, Dsouza AV, Marra K, Pogue BW, Roberts DW, Paulsen KD (2016) Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules. Biomed Opt Express 7:3280–3288CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Debie P, Vanhoeij M, Poortmans N et al (2017) Improved debulking of peritoneal tumor implants by near-infrared fluorescent nanobody image guidance in an experimental mouse model. Mol Imaging Biol 20(3):361–367CrossRefGoogle Scholar
  28. 28.
    Handgraaf HJM, Boonstra MC, Prevoo H, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten M, Valentijn ARPM, Burggraaf J, van de Velde C, Frangioni JV, Vahrmeijer AL (2017) Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 8:21054–21066CrossRefPubMedGoogle Scholar
  29. 29.
    Christensen A, Juhl K, Persson M, Charabi BW, Mortensen J, Kiss K, Lelkaitis G, Rubek N, von Buchwald C, Kjær A (2017) uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 8:15407–15419CrossRefPubMedGoogle Scholar
  30. 30.
    Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J (2015) Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors. Cancer Res 75:4283–4291CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Burggraaf J, Kamerling IM, Gordon PB et al (2015) Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-met. Nat Med 21:955–961CrossRefPubMedGoogle Scholar
  32. 32.
    Sturm MB, Joshi BP, Lu S et al (2013) Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 5:184ra161CrossRefGoogle Scholar
  33. 33.
    Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, Lee CL, Snuderl M, Blazer DG III, Hwang ES, Greenup RA, Mosca PJ, Mito JK, Cuneo KC, Larrier NA, O’Reilly EK, Riedel RF, Eward WC, Strasfeld DB, Fukumura D, Jain RK, Lee WD, Griffith LG, Bawendi MG, Kirsch DG, Brigman BE (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324CrossRefGoogle Scholar
  34. 34.
    Barth CW, Gibbs SL (2017) Direct administration of nerve-specific contrast to improve nerve sparing radical prostatectomy. Theranostics 7:573–593CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    KleinJan GH, Buckle T, van Willigen DM, Oosterom M, Spa S, Kloosterboer H, van Leeuwen F (2014) Fluorescent lectins for local in vivo visualization of peripheral nerves. Molecules 19:9876–9892CrossRefPubMedGoogle Scholar
  36. 36.
    Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, Felt SA, Friedland S, Liu JTC, Gambhir SS, Contag CH (2015) A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10:e0123185CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jokerst JV, Pohling C, Gambhir SS (2013) Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters. MRS Bull 38:625–630. CrossRefGoogle Scholar
  38. 38.
    Moore LS, Rosenthal EL, Chung TK, de Boer E, Patel N, Prince AC, Korb ML, Walsh EM, Young ES, Stevens TM, Withrow KP, Morlandt AB, Richman JS, Carroll WR, Zinn KR, Warram JM (2017) Characterizing the utility and limitations of repurposing an open-field optical imaging device for fluorescence-guided surgery in head and neck cancer patients. J Nucl Med 58:246–251CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zavaleta CL, Kircher MF, Gambhir SS (2011) Raman’s “effect” on molecular imaging. J Nucl Med 52:1839–1844CrossRefPubMedGoogle Scholar
  40. 40.
    Kang S, Wang Y, Reder NP, Liu JT (2016) Multiplexed molecular imaging of biomarker-targeted SERS nanoparticles on fresh tissue specimens with channel-compressed spectrometry. PLoS One 11:e0163473CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vendrell M, Maiti KK, Dhaliwal K, Chang YT (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257CrossRefPubMedGoogle Scholar
  42. 42.
    Thakor AS, Luong R, Paulmurugan R et al (2011) The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci Transl Med 3:79ra33CrossRefPubMedGoogle Scholar
  43. 43.
    Rogalla S, Contag CH (2015) Early cancer detection at the epithelial surface. Cancer J 21:179–187CrossRefPubMedGoogle Scholar
  44. 44.
    Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF (2015) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra277, 7, 271ra7Google Scholar
  45. 45.
    Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227CrossRefGoogle Scholar
  46. 46.
    Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794CrossRefPubMedGoogle Scholar
  47. 47.
    Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, Bayer C, Multhoff G, Ntziachristos V (2016) Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun 7.
  48. 48.
    Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35:267–280CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V (2017) Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin Cancer Res 23:6912–6922CrossRefPubMedGoogle Scholar
  50. 50.
    Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, Vetter M, Fischer S, Pfeifer L, Hagel A, Kielisch C, Görtz RS, Wildner D, Engel M, Röther J, Uter W, Siebler J, Atreya R, Rascher W, Strobel D, Neurath MF, Waldner MJ (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376:1292–1294CrossRefPubMedGoogle Scholar
  51. 51.
    van den Berg P, Daoudi K, Steenbergen W (2015) Review of photoacoustic flow imaging: its current state and its promises. Photoacoustics 3:89–99CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bell MAL, Ostrowski AK, Li K et al (2015) Localization of transcranial targets for photoacoustic-guided endonasal surgeries. Photoacoustics 3:78–87CrossRefGoogle Scholar
  53. 53.
    Mari JM, Xia W, West SJ, Desjardins AE (2015) Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study. J Biomed Opt 20:110503–110503CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gandhi N, Allard M, Kim S, Kazanzides P, Lediju Bell MA (2017) Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot. J Biomed Opt 22:121606CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dima A, Gateau J, Claussen J, Wilhelm D, Ntziachristos V (2013) Optoacoustic imaging of blood perfusion: techniques for intraoperative tissue viability assessment. J Biophotonics 6:485–492CrossRefPubMedGoogle Scholar
  56. 56.
    Kang J, Chang JH, Kim SM, Lee HJ, Kim H, Wilson BC, Song TK (2017) Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction. Sci Rep 7:45008CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee C, Lee D, Zhou Q, Ket a (2015) Real-time near-infrared virtual intraoperative surgical photoacoustic microscopy. Photoacoustics 3:100–106CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Maeda A, Bu J, Chen J, Zheng G, DaCosta RS (2014) Dual in vivo photoacoustic and fluorescence imaging of HER2 expression in breast tumors for diagnosis, margin assessment, and surgical guidance. Mol Imaging 13:1–9.
  59. 59.
    Levi J, Sathirachinda A, Gambhir SS (2014) A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 20:3721–3729CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tummers WSMS, Teraphongphom N, Gomez A et al (2018) Intraoperative pancreatic cancer detection using multimodality molecular imaging. Ann Surg Oncol 25:1880–1888. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kruger RA, Kiser WL, Miller KD, et al. (2000) Thermoacoustic CT: imaging principles [abstract]Google Scholar
  62. 62.
    Wu D, Huang L, Jiang MS, Jiang H (2014) Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci 15:23616–23639CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ogunlade O, Beard P (2015) Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med Phys 42:170–181CrossRefPubMedGoogle Scholar
  64. 64.
    Orsaria P, Chiaravalloti A, Fiorentini A, Pistolese C, Vanni G, Granai AV, Varvaras D, Danieli R, Schillaci O, Petrella G, Buonomo OC (2017) PET probe-guided surgery in patients with breast cancer: proposal for a methodological approach. In Vivo 31:101–110CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Povoski SP, Neff RL, Mojzisik CM et al (2009) A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 7:11CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106:4–16CrossRefPubMedGoogle Scholar
  67. 67.
    Pouw B, van der Ploeg IM, Muller SH et al (2015) Simultaneous use of an (125)I-seed to guide tumour excision and 99mTc-nanocolloid for sentinel node biopsy in non-palpable breast-conserving surgery. Eur J Surg Oncol 41:71–78CrossRefPubMedGoogle Scholar
  68. 68.
    Vidal-Sicart S, Paredes P, Zanon G, Pahisa J, Martinez-Roman S, Caparros X, Vilalta A, Rull R, Pons F (2010) Added value of intraoperative real-time imaging in searches for difficult-to-locate sentinel nodes. J Nucl Med 51:1219–1225CrossRefPubMedGoogle Scholar
  69. 69.
    KleinJan GH, Karakullukcu B, Klop WMC et al (2017) Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res 7:65CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, Old L, Fong Y, Larson SM (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22:386–391CrossRefPubMedGoogle Scholar
  71. 71.
    Singh B, Stack BC Jr, Thacker S et al (2013) A hand-held beta imaging probe for FDG. Ann Nuc Med 27:203–208CrossRefGoogle Scholar
  72. 72.
    Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med 55:95–98CrossRefPubMedGoogle Scholar
  73. 73.
    Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, Sbarbati A, Boschi F (2013) First human Cerenkography. J Biomed Opt 18:20502CrossRefPubMedGoogle Scholar
  74. 74.
    Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, Hamed H, Pawa A, Nimmo F, Owen J, Ramalingam V, Sethi S, Mistry S, Vyas K, Tuch DS, Britten A, van Hemelrijck M, Cook GJ, Sibley-Allen C, Allen S, Purushotham A (2017) Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med 58:891–898CrossRefPubMedGoogle Scholar
  75. 75.
    Buckle T, van Leeuwen AC, Chin PT et al (2010) A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21:355101CrossRefPubMedGoogle Scholar
  76. 76.
    van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FWB (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833CrossRefPubMedGoogle Scholar
  77. 77.
    Hekman MC, Boerman OC, de Weijert M et al (2016) Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res 22:4634–4642CrossRefPubMedGoogle Scholar
  78. 78.
    Bugby SL, Lees JE, Perkins AC (2017) Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clinical Translational Imaging 5:323–341CrossRefPubMedGoogle Scholar
  79. 79.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRefPubMedGoogle Scholar
  80. 80.
    Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10:257–273CrossRefPubMedGoogle Scholar
  81. 81.
    Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lin J-S, Lo S-C, Hasegawa A et al (1996) Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging 15:206–217CrossRefPubMedGoogle Scholar
  83. 83.
    Lo S-C, Lou S-L, Lin J-S, Fet a (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14:711–718CrossRefPubMedGoogle Scholar
  84. 84.
    Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK (1995) Artificial convolution neural network for medical image pattern recognition. Neural Netw 8(7-8):1201–1214Google Scholar
  85. 85.
    Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24:1138–1150CrossRefPubMedGoogle Scholar
  86. 86.
    Lo S-CB, Li H, Wang Y, et al. (2002) A multiple circular path convolution neural network system for detection of mammographic masses. ç 21:150–158Google Scholar
  87. 87.
    Sahiner B, Chan H-P, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15:598–610CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang W, Giger ML, Nishikawa RM, Schmidt RA (1996) An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys 23:595–601CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang W, Giger ML, Wu Y et al (1994) Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 21:517–524CrossRefPubMedGoogle Scholar
  90. 90.
    Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251CrossRefPubMedGoogle Scholar
  91. 91.
    Lee H, Mansouri M, Tajmir S, Lev MH, Choi J (2017) A deep-learning system for fully-automated peripherally inserted central catheter (PICC) tip detection. J Digit Imaging :1–10.
  92. 92.
    Karnes WE, Alkayali T, Mittal M, Patel A, Kim J, Chang KJ, Ninh AQ, Urban G, Baldi P (2017) Su1642 automated polyp detection using deep learning: leveling the field. Gastrointest Endosc 85:AB376–AB377CrossRefGoogle Scholar
  93. 93.
    Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A (2017) Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning. Sci Rep 7:11979CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Choi B, Jo K, Choi S, Choi J (2017) Surgical-tools detection based on Convolutional Neural Network in laparoscopic robot-assisted surgery. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Seogwipo, Republic of Korea, pp 1756–1759Google Scholar
  95. 95.
    Petscharnig S, Schöffmann K (2017) Learning laparoscopic video shot classification for gynecological surgery. Multim Tools Appl (7):8061–8079Google Scholar
  96. 96.
    Pakhomov D, Premachandran V, Allan M, Azizian M, Navab N (2017) Deep residual learning for instrument segmentation in robotic surgery. arXiv preprint arXiv:170308580Google Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Israt S. Alam
    • 1
    • 2
  • Idan Steinberg
    • 1
    • 2
  • Ophir Vermesh
    • 1
    • 2
  • Nynke S. van den Berg
    • 3
  • Eben L. Rosenthal
    • 3
  • Gooitzen M. van Dam
    • 4
    • 5
  • Vasilis Ntziachristos
    • 6
  • Sanjiv S. Gambhir
    • 1
    • 2
  • Sophie Hernot
    • 7
  • Stephan Rogalla
    • 1
    • 2
    • 8
    • 9
  1. 1.Molecular Imaging Program at StanfordStanford UniversityStanfordUSA
  2. 2.Department of RadiologyStanford University School of MedicineStanfordUSA
  3. 3.Department of Otolaryngology and Head and Neck SurgeryStanford University School of MedicineStanfordUSA
  4. 4.Surgery, University Medical Center GroningenGroningenThe Netherlands
  5. 5.Department of Nuclear Medicine & Molecular Imaging and Intensive CareUniversity of Groningen, University Medical CenterGroningenThe Netherlands
  6. 6.Institute for Biological and Medical ImagingTechnical University of Munich and Helmholtz Centre MunichMunichGermany
  7. 7.In Vivo Cellular and Molecular Imaging (ICMI/BEFY)Vrije Universiteit BrusselBrusselsBelgium
  8. 8.Department of MedicineDivision of Gastroenterology and Hepatology Stanford University School of MedicineStanfordUSA
  9. 9.Departments of Radiology and MedicineMolecular Imaging Program at Stanford (MIPS)StanfordUSA

Personalised recommendations