Molecular Imaging and Biology

, Volume 20, Issue 5, pp 857–867 | Cite as

[18F]Fluorocholine Uptake of Parathyroid Adenoma Is Correlated with Parathyroid Hormone Level

  • Abdullah A. AlharbiEmail author
  • Fahad M. Alshehri
  • Abdulrahman A. Albatly
  • Bert-Ram Sah
  • Christoph Schmid
  • Gerhard F. Huber
  • Martin W. Huellner
Research Article



The aim of the study was to investigate the relationship between [18F]fluoromethyl-dimethyl-2-hydroxyethylammonium ([18F]FCh) positron emission tomography (PET) parameters, laboratory parameters, and postoperative histopathological results in patients with primary hyperparathyroidism (pHPT) due to parathyroid adenomas.


This retrospective study was conducted in 52 patients with biochemically proven pHPT. [18F]FCh-PET parameters (maximum standardized uptake value: SUVmax) in early phase (after 2 min) and late phase (after 50 min), metabolic volume, and adenoma-to-background ratio (ABR), preoperative laboratory results (PTH and serum calcium concentration), and postoperative histopathology (location, size, volume, and weight of adenoma) were assessed. Relationship of PET parameters, laboratory parameters, and histopathological parameters was assessed using the Mann-Whitney U test and Spearman correlation coefficient. MRI characteristics of parathyroid adenomas were also analyzed.


The majority of patients underwent a PET/MR scan, 42 patients (80.7 %); 10 patients (19.3 %) underwent PET/CT. We found a strong positive correlation between late-phase SUVmax and preoperative PTH level (r = 0.768, p < 0.001) and between late-phase ABR and preoperative PTH level (r = 0.680, p < 0.001). The surgical specimen volume was positively correlated with the PET/MR lesion volume (r = 0.659, p < 0.001). No significant association was observed between other [18F]FCh-PET parameters, laboratory parameters, and histopathological findings. Cystic adenomas were larger than non-cystic adenomas (p = 0.048).


[18F]FCh uptake of parathyroid adenomas is strongly correlated with preoperative PTH serum concentration. Therefore, the preoperative PTH level might potentially be able to predict success of [18F]FCh-PET imaging in hyperparathyroidism, with higher lesion-to-background ratios being expected in patients with high PTH. PET/MR is accurate in estimating the volume of parathyroid adenomas.

Key Words

[18F]Fluorocholine Hyperparathyroidism Parathyroid adenoma Parathyroid hormone PET/CT PET/MRI 


Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

M.W.H. received speaker’s fees from GE Healthcare. The institution of M.W.H. received grants from GE Healthcare. All other authors declare no potential conflicts of interest.


  1. 1.
    Fraker DL, Harsono H, Lewis R (2009) Minimally invasive parathyroidectomy: benefits and requirements of localization, diagnosis, and intraoperative PTH monitoring. Long-term results. World J Surg 33:2256–2265CrossRefPubMedGoogle Scholar
  2. 2.
    Joborn C, Hetta J, Johansson H, Rastad J, Ågren H, Åkerström G, Ljunghall S (1988) Psychiatric morbidity in primary hyperparathyroidism. World J Surg 12:476–480CrossRefPubMedGoogle Scholar
  3. 3.
    Pasieka JL, Parsons LL (1998) Prospective surgical outcome study of relief of symptoms following surgery in patients with primary hyperparathyroidism. World J Surg 22:513–519CrossRefPubMedGoogle Scholar
  4. 4.
    Yeh MW, Ituarte PH, Zhou HC et al (2013) Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J Clin Endocrinol Metab 98:1122–1129CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelly H, Hamberg L, Hunter G (2014) 4D-CT for preoperative localization of abnormal parathyroid glands in patients with hyperparathyroidism: accuracy and ability to stratify patients by unilateral versus bilateral disease in surgery-naive and re-exploration patients. Am J Neuroradiol 35:176–181CrossRefPubMedGoogle Scholar
  6. 6.
    Quak E, Lheureux S, Reznik Y, Bardet S, Aide N (2013) F18-choline, a novel PET tracer for parathyroid adenoma. J Clin Endocrinol Metab 98:3111–3112CrossRefPubMedGoogle Scholar
  7. 7.
    Sandqvist P, Nilsson IL, Gryback P, Sanchez-Crespo A, Sundin A (2017) SPECT/CT’s advantage for preoperative localization of small parathyroid adenomas in primary hyperparathyroidism. Clin Nucl Med 42:e109–e114CrossRefPubMedGoogle Scholar
  8. 8.
    Lezaic L, Rep S, Sever MJ, Kocjan T, Hocevar M, Fettich J (2014) 18F-Fluorocholine PET/CT for localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism: a pilot study. Eur J Nucl Med Mol Imaging 41:2083–2089CrossRefPubMedGoogle Scholar
  9. 9.
    Sukan A, Reyhan M, Aydin M, Yapar AF, Sert Y, Canpolat T, Aktas A (2008) Preoperative evaluation of hyperparathyroidism: the role of dual-phase parathyroid scintigraphy and ultrasound imaging. Ann Nucl Med 22:123–131CrossRefPubMedGoogle Scholar
  10. 10.
    Slater A, Gleeson FV (2005) Increased sensitivity and confidence of SPECT over planar imaging in dual-phase sestamibi for parathyroid adenoma detection. Clin Nucl Med 30:1–3CrossRefPubMedGoogle Scholar
  11. 11.
    Woods AM, Bolster AA, Han S, Poon FW, Colville D, Shand J, Neilly JB (2017) Dual-isotope subtraction SPECT-CT in parathyroid localization. Nucl Med Commun 38:1047–1054CrossRefPubMedGoogle Scholar
  12. 12.
    Huellner MW, Aberle S, Sah BR, Veit-Haibach P, Bonani M, Schmid C, Steinert H (2016) Visualization of parathyroid hyperplasia using 18F-fluorocholine PET/MR in a patient with secondary hyperparathyroidism. Clin Nucl Med 41:e159–e161CrossRefPubMedGoogle Scholar
  13. 13.
    Huber GF, Hüllner M, Schmid C, Brunner A, Sah B, Vetter D, Kaufmann PA, von Schulthess GK (2018) Benefit of 18F-fluorocholine PET-imaging in parathyroid surgery. Eur Radiol.
  14. 14.
    Hocevar M, Lezaic L, Rep S, Zaletel K, Kocjan T, Sever MJ, Zgajnar J, Peric B (2017) Focused parathyroidectomy without intraoperative parathormone testing is safe after pre-operative localization with 18F-Fluorocholine PET/CT. Eur J Surg Oncol 43:133–137CrossRefPubMedGoogle Scholar
  15. 15.
    Kluijfhout WP, Vorselaars WM, van den Berk SA et al (2016) Fluorine-18 fluorocholine PET-CT localizes hyperparathyroidism in patients with inconclusive conventional imaging: a multicenter study from the Netherlands. Nucl Med Commun 37:1246–1252CrossRefPubMedGoogle Scholar
  16. 16.
    Michaud L, Balogova S, Burgess A et al (2015) A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine 94:e1701CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thanseer N, Bhadada SK, Sood A et al (2017) Comparative effectiveness of ultrasonography, 99mTc-sestamibi, and 18F-fluorocholine PET/CT in detecting parathyroid adenomas in patients with primary hyperparathyroidism. Clin Nucl Med 42:e491-e497CrossRefPubMedGoogle Scholar
  18. 18.
    DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43:92–96PubMedGoogle Scholar
  19. 19.
    Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, Cozzarini C, di Muzio N, Rigatti P, Fazio F, Messa C (2010) Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37:301–309CrossRefPubMedGoogle Scholar
  20. 20.
    Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, Mancini M (2008) Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 113:895–904CrossRefPubMedGoogle Scholar
  21. 21.
    Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47:262–269PubMedGoogle Scholar
  22. 22.
    Oprea-Lager DE, Vincent AD, van Moorselaar RJ et al (2012) Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One 7:–e48430Google Scholar
  23. 23.
    Rep S, Lezaic L, Kocjan T, Pfeifer M, Sever MJ, Simoncic U, Tomse P, Hocevar M (2015) Optimal scan time for evaluation of parathyroid adenoma with [18F]-fluorocholine PET/CT. Radiol Oncol 49:327–333CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vellani C, Hodolic M, Chytiris S, Trifiro G, Rubello D, Colletti PM (2017) Early and delayed 18F-FCH PET/CT imaging in parathyroid adenomas. Clin Nucl Med 42:143–144CrossRefPubMedGoogle Scholar
  25. 25.
    Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50:1315–1323CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Surti S, Karp J (2008) Experimental evaluation of a simple lesion detection task with time-of-flight PET. Phys Med Biol 54:373CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Surti S, Karp S, Popescu LM, Daube-Witherspoon E, Werner M (2006) Investigation of time-of-flight benefit for fully 3-DPET. IEEE Trans Med Imaging 25:529–538CrossRefPubMedGoogle Scholar
  28. 28.
    Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 49:462–470CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Protection R (2007) ICRP publication 103. Ann ICRP 37:2.
  30. 30.
    Queiroz MA, Delso G, Wollenweber S, Deller T, Zeimpekis K, Huellner M, de Galiza Barbosa F, von Schulthess G, Veit-Haibach P (2015) Dose optimization in TOF-PET/MR compared to TOF-PET/CT. PLoS One 10:e0128842CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sekine T, Delso G, Zeimpekis KG, et al (2017) Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology:162305Google Scholar
  32. 32.
    Yousem D (1996) Parathyroid and thyroid imaging. Neuroimaging Clin N Am 6:435–459PubMedGoogle Scholar
  33. 33.
    Nael K, Hur J, Bauer A, Khan R, Sepahdari A, Inampudi R, Guerrero M (2015) Dynamic 4D MRI for characterization of parathyroid adenomas: multiparametric analysis. Am J Neuroradiol 36:2147–2152CrossRefPubMedGoogle Scholar
  34. 34.
    McCoy KL, Yim JH, Zuckerbraun BS, Ogilvie JB, Peel RL, Carty SE (2009) Cystic parathyroid lesions: functional and nonfunctional parathyroid cysts. Arch Surg 144:52–56CrossRefPubMedGoogle Scholar
  35. 35.
    Randel SB, Gooding G, Clark OH, Stein R, Winkler B (1987) Parathyroid variants: US evaluation. Radiology 165:191–194CrossRefPubMedGoogle Scholar
  36. 36.
    Johnson NA, Yip L, Tublin ME (2010) Cystic parathyroid adenoma: sonographic features and correlation with 99mTc-sestamibi SPECT findings. Am Jo Roentgenol 195:1385–1390CrossRefGoogle Scholar
  37. 37.
    Parfitt MA, Rao DS, Kleerekoper M (1991) Asymptomatic primary hyperparathyroidism discovered by multichannel biochemical screening: clinical course and considerations bearing on the need for surgical intervention. J Bone Miner Res 6:S97–S101CrossRefPubMedGoogle Scholar
  38. 38.
    Eiber M, Rauscher I, Souvatzoglou M et al (2017) Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging:1–10Google Scholar
  39. 39.
    Souvatzoglou M, Eiber M, Takei T, Fürst S, Maurer T, Gaertner F, Geinitz H, Drzezga A, Ziegler S, Nekolla SG, Rummeny EJ, Schwaiger M, Beer AJ (2013) Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 40:1486–1499CrossRefPubMedGoogle Scholar
  40. 40.
    Iagaru A, Mittra E, Minamimoto R, Jamali M, Levin C, Quon A, Gold G, Herfkens R, Vasanawala S, Gambhir SS, Zaharchuk G (2015) Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med 40:1–8CrossRefPubMedGoogle Scholar
  41. 41.
    Jolepalem P, Rydberg JN, Wong CO (2013) Improvement of hepatic lesion characterization by 18F-FDG PET/CT with the use of the lesion to background liver activity ratio. Clin Nucl Med 38:869–873CrossRefPubMedGoogle Scholar
  42. 42.
    Jolepalem P, Flynt L, Rydberg JN, Wong CY (2014) Implications of ambient glucose variation on the target-to-background ratio of hepatic tumors by 18FDG-PET imaging. J Clin Imaging Sci 4:39CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV (2015) Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med 56:1447–1452CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Abdullah A. Alharbi
    • 1
    Email author
  • Fahad M. Alshehri
    • 2
  • Abdulrahman A. Albatly
    • 1
  • Bert-Ram Sah
    • 1
  • Christoph Schmid
    • 3
  • Gerhard F. Huber
    • 4
  • Martin W. Huellner
    • 1
  1. 1.Department of Nuclear MedicineUniversity Hospital Zurich / University of ZurichZurichSwitzerland
  2. 2.Department of NeuroradiologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZurichZurichSwitzerland
  4. 4.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations