Molecular Imaging and Biology

, Volume 20, Issue 4, pp 632–640 | Cite as

Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status

  • Georg Alexander Gihr
  • Diana Horvath-Rizea
  • Nikita Garnov
  • Patricia Kohlhof-Meinecke
  • Oliver Ganslandt
  • Hans Henkes
  • Hans Jonas Meyer
  • Karl-Titus Hoffmann
  • Alexey Surov
  • Stefan Schob
Research Article



Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status.


Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed.


The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas.


ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.

Key Words

Meningiomas Diffusion-weighted imaging Histogram analysis Histopathology Imaging biomarker 


Compliance with Ethical Standards

The study was approved by the ethics committee of the medical council of Baden-Württemberg (Ethik-Kommission Landesärztekammer Baden-Württemberg, F-2017-047).

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Information

This study acknowledges funding via the Clinician-Scientist-Program of the medical faculty of the University Hospital Leipzig.


  1. 1.
    Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-Oncology 18(suppl_5):v1–v75. CrossRefPubMedGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  3. 3.
    Böker DK, Meurer H, Gullotta F (1985) Recurring intracranial meningiomas. Evaluation of some factors predisposing for tumor recurrence. J Neurosurg Sci 29:11–17PubMedGoogle Scholar
  4. 4.
    Marosi C, Hassler M, Roessler K et al (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171CrossRefPubMedGoogle Scholar
  5. 5.
    Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM (2005) Epidemiology of intracranial meningioma. Neurosurgery 57(6):1088–1095. CrossRefPubMedGoogle Scholar
  6. 6.
    Kshettry VR, Ostrom QT, Kruchko C, al –Mefty O, Barnett GH, Barnholtz–Sloan JS (2015) Descriptive epidemiology of World Health Organization grades II and III intracranial meningiomas in the United States. Neuro-Oncology 17(8):1166–1173. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Willis J, Smith C, Ironside JW et al (2005) The accuracy of meningioma grading: a 10-year retrospective audit. Neuropathol Appl Neurobiol 31:141–149CrossRefPubMedGoogle Scholar
  8. 8.
    Pearson BE, Markert JM, Fisher WS, Guthrie BL, Fiveash JB, Palmer CA, Riley K (2008) Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus 24(5):E3. CrossRefPubMedGoogle Scholar
  9. 9.
    van Alkemade H, de Leau M, Dieleman EMT et al (2012) Impaired survival and long-term neurological problems in benign meningioma. Neuro-Oncology 14:658–666CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Meixensberger J, Meister T, Janka M et al (1996) Factors influencing morbidity and mortality after cranial meningioma surgery—a multivariate analysis. In: Modern Neurosurgery of Meningiomas and Pituitary Adenomas. Springer Vienna, Vienna, pp 99–101. CrossRefGoogle Scholar
  11. 11.
    Black P, Kathiresan S, Chung W (1998) Meningioma surgery in the elderly: a case-control study assessing morbidity and mortality. Acta Neurochir 140:1013–1017CrossRefPubMedGoogle Scholar
  12. 12.
    Vernooij MW, Ikram MA, Tanghe HL, Vincent AJPE, Hofman A, Krestin GP, Niessen WJ, Breteler MMB, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828. CrossRefPubMedGoogle Scholar
  13. 13.
    Steinberger J, Bronheim RS, Vempati P, Oermann EK, Ladner TR, Lee NJ, Kothari P, Caridi JM, Shrivastava RK (2017) Morbidity and mortality of meningioma resection increases in octogenarians. World Neurosurg 109:e16–e23. CrossRefPubMedGoogle Scholar
  14. 14.
    Goldbrunner R, Minniti G, Preusser M et al (2016) Review EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 17:e383–e391CrossRefPubMedGoogle Scholar
  15. 15.
    Kawahara Y, Nakada M, Hayashi Y et al (2012) Prediction of high-grade meningioma by preoperative MRI assessment. J Neuro-Oncol 108:147–152CrossRefGoogle Scholar
  16. 16.
    Lin B-J, Chou K-N, Kao H-W, Lin C, Tsai WC, Feng SW, Lee MS, Hueng DY (2014) Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J Neurosurg 121(5):1201–1208. CrossRefPubMedGoogle Scholar
  17. 17.
    Yan P-F, Yan L, Hu T-T et al (2017) The potential value of preoperative MRI texture and shape analysis in grading meningiomas: a preliminary investigation. TRANON 10:570–577Google Scholar
  18. 18.
    Schob S, Frydrychowicz C, Gawlitza M et al (2016) Signal intensities in preoperative MRI do not reflect proliferative activity in meningioma. Transl Oncol 9:274–279CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268(2):318–322. CrossRefPubMedGoogle Scholar
  20. 20.
    Schob S, Surov A, Wienke A et al (2016) Correlation between aquaporin 4 expression and different DWI parameters in grade I meningioma. Mol Imaging Biol 19(1):138–142CrossRefGoogle Scholar
  21. 21.
    Nagar VA, Ye JR, Ng WH, Chan YH, Hui F, Lee CK, Lim CCT (2008) Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol 29(6):1147–1152. CrossRefPubMedGoogle Scholar
  22. 22.
    Surov A, Gottschling S, Mawrin C et al (2015) Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with histopathological parameters. TRANON 8:517–523Google Scholar
  23. 23.
    Ginat DT, Mangla R, Yeaney G, Wang HZ (2010) Correlation of diffusion and perfusion MRI with Ki-67 in high-grade meningiomas. Am J Roentgenol 195(6):1391–1395. CrossRefGoogle Scholar
  24. 24.
    Sanverdi SE, Ozgen B, Oguz KK et al (2012) Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas? Eur J Radiol 81:2389–2395CrossRefPubMedGoogle Scholar
  25. 25.
    Schob S, Meyer J, Gawlitza M et al (2016) Diffusion-weighted MRI reflects proliferative activity in primary CNS lymphoma. PLoS One 11(8):e0161386. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Surov A, Caysa H, Wienke A et al (2015) Correlation between different ADC fractions, cell count, Ki-67, total nucleic areas and average nucleic areas in meningothelial meningiomas. Anticancer Res 35:6841–6846PubMedGoogle Scholar
  27. 27.
    Chen L, Liu M, Bao J et al (2013) The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One 8:e79008. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Backer-Grøndahl T, Moen BH, Torp SH (2012) The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol 5(3):231–242PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schob S, Meyer HJ, Pazaitis N, Schramm D, Bremicker K, Exner M, Höhn AK, Garnov N, Surov A (2017) ADC histogram analysis of cervical cancer aids detecting lymphatic metastases—a preliminary study. Mol Imaging Biol 19(6):953–962. CrossRefPubMedGoogle Scholar
  30. 30.
    Rosenkrantz AB (2013) Histogram-based apparent diffusion coefficient analysis: an emerging tool for cervical cancer characterization? Am J Roentgenol 200(2):311–313. CrossRefGoogle Scholar
  31. 31.
    Suo S, Zhang K, Cao M et al (2016) Characterization of breast masses as benign or malignant at 3.0T MRI with whole-lesion histogram analysis of the apparent diffusion coefficient. J Magn Reson Imaging 43:894–902CrossRefPubMedGoogle Scholar
  32. 32.
    Foroutan P, Kreahling JM, Morse DL, Grove O, Lloyd MC, Reed D, Raghavan M, Altiok S, Martinez GV, Gillies RJ (2013) Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One 8(12):e82875. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH (2014) Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 9(9):e108335. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hsu DW, Efird JT, Hedley-Whyte ET (1997) Progesterone and estrogen receptors in meningiomas: prognostic considerations. J Neurosurg 86(1):113–120. CrossRefPubMedGoogle Scholar
  35. 35.
    Sasaki M, Yamada K, Watanabe Y et al (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249:624–630CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Georg Alexander Gihr
    • 1
  • Diana Horvath-Rizea
    • 1
  • Nikita Garnov
    • 2
  • Patricia Kohlhof-Meinecke
    • 3
  • Oliver Ganslandt
    • 4
  • Hans Henkes
    • 1
  • Hans Jonas Meyer
    • 5
  • Karl-Titus Hoffmann
    • 6
  • Alexey Surov
    • 5
  • Stefan Schob
    • 6
  1. 1.Clinic for NeuroradiologyKatharinenhospital StuttgartStuttgartGermany
  2. 2.Eichamt LeipzigLeipzigGermany
  3. 3.Department for PathologyKatharinenhospital StuttgartStuttgartGermany
  4. 4.Neurosurgical ClinicKatharinenhospital StuttgartStuttgartGermany
  5. 5.Clinic for Diagnostic and Interventional RadiologyUniversity Hospital LeipzigLeipzigGermany
  6. 6.Department for NeuroradiologyUniversity Hospital LeipzigLeipzigGermany

Personalised recommendations