Advertisement

Molecular Imaging and Biology

, Volume 20, Issue 3, pp 492–500 | Cite as

Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI

  • Spencer C. Behr
  • Emma BahroosEmail author
  • Randall A. Hawkins
  • Lorenzo Nardo
  • Vahid Ravanfar
  • Emily V. Capbarat
  • Youngho Seo
Research Article

Abstract

Purpose

Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems.

Procedures

Whole-body 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUVmax and SUVmean) of normal tissues and lesions detected were measured and compared.

Results

Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUVmean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of – 18 ± 28 % (p < 0.001), − 16 ± 29 % (p = 0.001), − 16 ± 31 % (p = 0.002), − 14 ± 35 % (p < 0.001), and − 13 ± 34 % (p = 0.002), respectively. SUVmax and SUVpeak values of all lesions were higher and statistically significant (p < 0.05) for 4, 2, 1, 0.50, and 0.25 min/bed PET/MR datasets.

Conclusion

High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This “ultra-sensitivity” PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.

Key words

PET PET/MRI PET/CT TOF Sub-mSv High-sensitivity Timing resolution Ultrafast 

Notes

Funding

This project was supported in part by grant form GE Healthcare.

References

  1. 1.
    Vandenberghe S, Mikhaylova E, D'Hoe E, Mollet P, Karp JS (2016) Recent developments in time-of-flight PET. EJNMMI Phys 3(1):3.  https://doi.org/10.1186/s40658-016-0138-3 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 49(3):462–470.  https://doi.org/10.2967/jnumed.107.044834 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480PubMedGoogle Scholar
  4. 4.
    Miller M, Zhang J, Binzel K et al (2015) Characterization of the Vereos digital photon counting PET system. J Nucl Med 56:434Google Scholar
  5. 5.
    Schmall JP, Wiener RI, Surti S, Ferri A, Gola A, Tarolli A, Piemonte C, Karp JS (2014) Timing and energy resolution of new near-UV SiPMs coupled to LaBr3:Ce for TOF-PET. IEEE Trans Nucl Sci 61(5):2426–2432.  https://doi.org/10.1109/TNS.2014.2346579 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    David S, Jakob W, Peter Michael D et al (2015) PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators. Phys Med Biol 60:7045CrossRefGoogle Scholar
  7. 7.
    Martins P, Blanco A, Crespo P, Marques MFF, Marques RF, Gordo PM, Kajetanowicz M, Korcyl G, Lopes L, Michel J, Palka M, Traxler M, Fonte P (2014) Towards very high resolution RPC-PET for small animals. J Instrum 9(10):C10012.  https://doi.org/10.1088/1748-0221/9/10/C10012 CrossRefGoogle Scholar
  8. 8.
    Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, Buchbender C, Kuehl H, Bockisch A, Lauenstein TC (2013) Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Investig Radiol 48(5):273–279.  https://doi.org/10.1097/RLI.0b013e3182871a7f CrossRefGoogle Scholar
  9. 9.
    Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50(8):1315–1323.  https://doi.org/10.2967/jnumed.109.063016 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Taniguchi T, Akamatsu G, Kasahara Y, Mitsumoto K, Baba S, Tsutsui Y, Himuro K, Mikasa S, Kidera D, Sasaki M (2015) Improvement in PET/CT image quality in overweight patients with PSF and TOF. Ann Nucl Med 29(1):71–77.  https://doi.org/10.1007/s12149-014-0912-z PubMedCrossRefGoogle Scholar
  11. 11.
    Karlberg AM, Saether O, Eikenes L, Goa PE (2016) Quantitative comparison of PET performance-Siemens biograph mCT and mMR. EJNMMI Phys 3(1):5.  https://doi.org/10.1186/s40658-016-0142-7 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, Conti M, Panin VY, Kadrmas DJ, Townsend DW (2010) An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 51(2):237–245.  https://doi.org/10.2967/jnumed.109.068098 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zeimpekis KG, Barbosa F, Hüllner M, ter Voert E, Davison H, Veit-Haibach P, Delso G (2015) Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MRI compared to TOF-PET/CT—initial results. Mol Imaging Biol 17(5):735–744.  https://doi.org/10.1007/s11307-015-0845-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Armstrong IS, James JM, Williams HA, Kelly MD, Matthews JC (2015) The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18F-FDG PET. Nucl Med Commun 36(7):728–737.  https://doi.org/10.1097/MNM.0000000000000305 PubMedCrossRefGoogle Scholar
  15. 15.
    Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ (2012) Effect of scan time on oncologic lesion detection in whole-body PET. IEEE Trans Nucl Sci 59(5):1940–1947.  https://doi.org/10.1109/TNS.2012.2197414 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hausmann D, Bittencourt LK, Attenberger UI, Sertdemir M, Weidner A, Büsing KA, Brade J, Wenz F, Schoenberg SO, Dinter DJ (2014) Diagnostic accuracy of 18F choline PET/CT using time-of-flight reconstruction algorithm in prostate cancer patients with biochemical recurrence. Clin Nucl Med 39(3):e197–e201.  https://doi.org/10.1097/RLU.0b013e3182a23d37 PubMedCrossRefGoogle Scholar
  17. 17.
    Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS (2016) NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys 43(5):2334–2343.  https://doi.org/10.1118/1.4945416 PubMedCrossRefGoogle Scholar
  18. 18.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895PubMedGoogle Scholar
  19. 19.
    Jones SC, Alavi A, Christman D, Montanez I, Wolf AP, Reivich M (1982) The radiation dosimetry of 2 [F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med 23(7):613–617PubMedGoogle Scholar
  20. 20.
    Kinahan PE, Fletcher JW (2010) PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31(6):496–505.  https://doi.org/10.1053/j.sult.2010.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR (2013) Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol 15(3):345–352.  https://doi.org/10.1007/s11307-012-0600-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Cheng G, Torigian DA, Zhuang H, Alavi A (2013) When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging 40(5):779–787.  https://doi.org/10.1007/s00259-013-2343-9 PubMedCrossRefGoogle Scholar
  23. 23.
    Oldan JD, Turkington TG, Choudhury K, Chin BB (2015) Quantitative differences in [(18)F] NaF PET/CT: TOF versus non-TOF measurements. Am J Nucl Med Mol Imaging 5(5):504–514PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hamada K, Tomita Y, Ueda T, Enomoto K, Kakunaga S, Myoui A, Higuchi I, Yoshikawa H, Hatazawa J (2006) Evaluation of delayed 18F-FDG PET in differential diagnosis for malignant soft-tissue tumors. Ann Nucl Med 20(10):671–675PubMedCrossRefGoogle Scholar
  25. 25.
    Iagaru A, Mittra E, Minamimoto R, Jamali M, Levin C, Quon A, Gold G, Herfkens R, Vasanawala S, Gambhir SS, Zaharchuk G (2015) Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med 40(1):1–8.  https://doi.org/10.1097/RLU.0000000000000611 PubMedCrossRefGoogle Scholar
  26. 26.
    Koopman D, van Dalen JA, Lagerweij MC, Arkies H, de Boer J, Oostdijk AH, Slump CH, Jager PL (2015) Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions. J Nucl Med Technol 43(1):21–27.  https://doi.org/10.2967/jnmt.114.147215 PubMedCrossRefGoogle Scholar
  27. 27.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S.  https://doi.org/10.2967/jnumed.108.057307 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, Galbraith SM (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50(10):1646–1654.  https://doi.org/10.2967/jnumed.109.063347 PubMedCrossRefGoogle Scholar
  29. 29.
    Budinger TF (1983) Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 24(1):73–78PubMedGoogle Scholar
  30. 30.
    Teras M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J (2007) Performance of the new generation of whole-body PET/CT scanners: discovery STE and discovery VCT. Eur J Nucl Med Mol Imaging 34(10):1683–1692.  https://doi.org/10.1007/s00259-007-0493-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E (2005) Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard. J Nucl Med 46(12):2083–2091PubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Spencer C. Behr
    • 1
  • Emma Bahroos
    • 1
    Email author
  • Randall A. Hawkins
    • 1
  • Lorenzo Nardo
    • 2
  • Vahid Ravanfar
    • 1
  • Emily V. Capbarat
    • 1
  • Youngho Seo
    • 1
    • 3
  1. 1.Department of Radiology and Biomedical ImagingUCSFSan FranciscoUSA
  2. 2.Department of Radiology and Biomedical Engineering, Davis Medical CenterUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Radiation OncologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations