Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery


Molecular imaging is a vital tool to non-invasively measure nanoparticle delivery to solid tumors. Despite the myriad of nanoparticles studied for cancer, successful applications of nanoparticles in humans is limited by inconsistent and ineffective delivery. Successful nanoparticle delivery in preclinical models is often attributed to enhanced permeability and retention (EPR)—a set of conditions that is heterogeneous and transient in patients. Thus, researchers are evaluating therapeutic strategies to modify nanoparticle delivery, particularly treatments which have demonstrated effects on EPR conditions. Imaging nanoparticle distribution provides a means to measure the effects of therapeutic intervention on nanoparticle delivery to solid tumors. This review focuses on the utility of imaging to measure treatment-induced changes in nanoparticle delivery to tumors and provides preclinical examples studying a broad range of therapeutic interventions.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.

    Sagnella SM, McCarroll JA, Kavallaris M (2014) Drug delivery: beyond active tumour targeting. Nanomedicine 10:1131–1137

  2. 2.

    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

  3. 3.

    Toussaint M, Pinel S, Auger F et al (2017) Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 7:436–451

  4. 4.

    Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med:7–314ra183

  5. 5.

    Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

  6. 6.

    Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202

  7. 7.

    Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268

  8. 8.

    Devaraj NK, Keliher EJ, Thurber GM et al (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20:397–401

  9. 9.

    Funkhouser J (2002) Reinventing pharma: the Theranostic revolution. Curr Drug Discov 2:17–19

  10. 10.

    Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038

  11. 11.

    Zhou H, Qian W, Uckun FM et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9:7976–7991

  12. 12.

    Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890

  13. 13.

    Geretti E, Leonard SC, Dumont N et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14:2060–2071

  14. 14.

    Doi Y, Abu Lila AS, Matsumoto H et al (2016) Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 11:5573–5582

  15. 15.

    Nakamura K, Abu Lila AS, Matsunaga M et al (2011) A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 19:2040–2047

  16. 16.

    Moding EJ, Clark DP, Qi Y et al (2013) Dual-energy micro-computed tomography imaging of radiation-induced vascular changes in primary mouse sarcomas. Int J Radiat Oncol Biol Phys 85:1353–1359

  17. 17.

    Matteucci ML, Anyarambhatla G, Rosner G et al (2000) Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 6:3748–3755

  18. 18.

    Kleiter MM, Yu D, Mohammadian LA et al (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807

  19. 19.

    Head HW, Dodd GD 3rd, Bao A et al (2010) Combination radiofrequency ablation and intravenous radiolabeled liposomal doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology 255:405–414

  20. 20.

    Zheng X, Goins BA, Cameron IL et al (2011) Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 67:173–182

  21. 21.

    Lammers T, Subr V, Peschke P et al (2008) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–910

  22. 22.

    Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720

  23. 23.

    Daldrup-Link HE, Mohanty S, Ansari C et al (2016) Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 1:e85608

  24. 24.

    Kumar V, Boucher Y, Liu H et al (2016) Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9:431–437

  25. 25.

    Appelbe OK, Zhang Q, Pelizzari CA et al (2016) Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol Pharm 13:3457–3467

  26. 26.

    Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327

  27. 27.

    Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm

  28. 28.

    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

  29. 29.

    Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

  30. 30.

    Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554

  31. 31.

    Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

  32. 32.

    Jung B, Shim MK, Park MJ et al (2017) Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int J Pharm 520:111–118

  33. 33.

    Gao W, Wang Z, Lv L et al (2016) Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:1131–1144

  34. 34.

    Li Y, Xiao K, Luo J et al (2010) A novel size-tunable nanocarrier system for targeted anticancer drug delivery. J Control Release 144:314–323

  35. 35.

    Lv S, Li M, Tang Z et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342

  36. 36.

    Danhier F (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121

  37. 37.

    Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766

  38. 38.

    Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465

  39. 39.

    Yokoi K, Kojic M, Milosevic M et al (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246

  40. 40.

    Yokoi K, Chan D, Kojic M et al (2015) Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release 217:293–299

  41. 41.

    Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020

  42. 42.

    Kjellman P, in ‘t Zandt R, Fredriksson S et al (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095

  43. 43.

    Song J, Yang X, Yang Z et al (2017) Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano

  44. 44.

    Ramishetti S, Huang L (2012) Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv 3:1429–1445

  45. 45.

    Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514

  46. 46.

    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

  47. 47.

    Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

  48. 48.

    Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234

  49. 49.

    Zalcman G, Mazieres J, Margery J et al (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387:1405–1414

  50. 50.

    Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

  51. 51.

    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

  52. 52.

    Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950

  53. 53.

    Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482

  54. 54.

    Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

  55. 55.

    Sounni NE, Dehne K, van Kempen L et al (2010) Stromal regulation of vessel stability by MMP14 and TGFbeta. Dis Model Mech 3:317–332

  56. 56.

    Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

  57. 57.

    Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112

  58. 58.

    Hylander BL, Sen A, Beachy SH et al (2015) Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 217:160–169

  59. 59.

    Lu D, Wientjes MG, Lu Z et al (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322:80–88

  60. 60.

    Wang J, Lu Z, Wang J et al (2015) Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors. J Control Release 216:103–110

  61. 61.

    Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–504

  62. 62.

    Stapleton S, Jaffray D, Milosevic M (2016) Radiation effects on the tumor microenvironment: implications for nanomedicine delivery. Adv Drug Deliv Rev.

  63. 63.

    Davies Cde L, Lundstrom LM, Frengen J et al (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res 64:547–553

  64. 64.

    Giustini AJ, Petryk AA, Hoopes PJ (2012) Ionizing radiation increases systemic nanoparticle tumor accumulation. Nanomedicine 8:818–821

  65. 65.

    Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–744

  66. 66.

    Ware MJ, Krzykawska-Serda M, Chak-Shing Ho J et al (2017) Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci Rep 7:43961

  67. 67.

    McGahan JP, Brock JM, Tesluk H et al (1992) Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297

  68. 68.

    Kirui DK, Mai J, Palange AL et al (2014) Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors. PLoS One 9:e86489

  69. 69.

    Kirui DK, Koay EJ, Guo X et al (2014) Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 10:1487–1496

  70. 70.

    Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032

  71. 71.

    Huang SK, Stauffer PR, Hong K et al (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191

  72. 72.

    Li L, ten Hagen TL, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137

  73. 73.

    Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

  74. 74.

    Diop-Frimpong B, Chauhan VP, Krane S et al (2011) Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A 108:2909–2914

  75. 75.

    Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

Download references

Author information

Correspondence to Anthony F. Shields.

Ethics declarations

Conflict of Interest

The investigators have received research support from Merrimack Pharmaceuticals, Cambridge, MA, and Ipsen Biopharmaceuticals, Cambridge, MA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blocker, S.J., Shields, A.F. Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery. Mol Imaging Biol 20, 340–351 (2018). https://doi.org/10.1007/s11307-017-1142-2

Download citation

Key words

  • Nanoparticles
  • Imaging
  • Theranostics
  • Chemotherapy