Molecular Imaging and Biology

, Volume 20, Issue 2, pp 171–182 | Cite as

Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control

  • Franziska Albers
  • Lydia Wachsmuth
  • Timo Mauritz van Alst
  • Cornelius Faber
Review Article

Abstract

Recent developments of optogenetic tools and fluorescence-based calcium recording techniques enable the manipulation and monitoring of neural circuits on a cellular level. Non-invasive imaging of brain networks, however, requires the application of methods such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), which is commonly used for functional neuroimaging. While BOLD fMRI provides brain-wide non-invasive reading of the hemodynamic response, it is only an indirect measure of neural activity. Direct observation of neural responses requires electrophysiological or optical methods. The latter can be combined with optogenetic control of neuronal circuits and are MRI compatible. Yet, simultaneous optical recordings are still limited to fiber-optic-based approaches. Here, we review the integration of optical recordings and optogenetic manipulation into fMRI experiments. As a practical example, we describe how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings and optogenetic control in a multimodal setup. We present simultaneous BOLD fMRI and calcium recordings under optogenetic control in rat. We outline details about MR coil configuration, choice, and usage of opsins and chemically and genetically encoded calcium sensors, fiber implantation, appropriate light power for stimulation, and calcium signal detection, to provide a glimpse into challenges and opportunities of this multimodal molecular neuroimaging approach.

Key Words

fMRI Optogenetics Fiber-based calcium recordings Opsin Calcium indicator Small-animal fMRI 

Notes

Acknowledgements

We thank Ofer Yizhar for his presentation and all participants of the study group meeting for the lively discussion. We thank Florian Schmid for his pioneering work and essential contribution to establishing the described experimental setup in our lab, Albrecht Stroh for his close collaboration with many discussions and intense scientific exchange, and Xin Yu for valuable advice during this period.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gobel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology 22:358–365CrossRefPubMedGoogle Scholar
  2. 2.
    Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529CrossRefPubMedGoogle Scholar
  3. 3.
    Packer AM, Roska B, Häusser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398CrossRefPubMedGoogle Scholar
  5. 5.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  6. 6.
    Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34CrossRefPubMedGoogle Scholar
  7. 7.
    Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172CrossRefGoogle Scholar
  8. 8.
    Boyden ES (2015) Optogenetics and the future of neuroscience. Nat Neurosci 18:1200–1201CrossRefPubMedGoogle Scholar
  9. 9.
    Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284CrossRefPubMedGoogle Scholar
  10. 10.
    Gradinaru V, Thompson KR, Zhang F et al (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27:14231–14238CrossRefPubMedGoogle Scholar
  11. 11.
    Fenno LE, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Nerurocsci 34:389–412CrossRefGoogle Scholar
  12. 12.
    Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berndt A, Schoenenberger P, Mattis J et al (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595–7600CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392CrossRefPubMedGoogle Scholar
  15. 15.
    Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234CrossRefPubMedGoogle Scholar
  17. 17.
    Bamann C, Gueta R, Kleinlogel S et al (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278CrossRefPubMedGoogle Scholar
  18. 18.
    Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chuong AS, Miri ML, Busskamp V et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17:1123–1129CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wietek J, Wiegert JS, Adeishvili N et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412CrossRefPubMedGoogle Scholar
  22. 22.
    Govorunova EG, Sineshchekov OA, Janz R et al (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Govorunova EG, Sineshchekov OA, Rodarte EM et al (2017) The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci Rep 7:43358CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berndt A, Lee SY, Ramakrishnan C et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25CrossRefPubMedGoogle Scholar
  26. 26.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bamann C, Kirsch T, Nagel G et al (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694CrossRefPubMedGoogle Scholar
  28. 28.
    Feldbauer K, Zimmermann D, Pintschovius V et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng H, Madisen L (2012) Mouse transgenic approaches in optogenetics. Prog Brain Res 196:193–213CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Witten IB, Steinberg EE, Lee SY et al (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72:721–733CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedGoogle Scholar
  32. 32.
    Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885CrossRefPubMedGoogle Scholar
  33. 33.
    Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kerr JND, Greenberg D, Helmchen F (2005) From the cover: imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102:14063–14068CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tischbirek CH, Birkner A, Konnerth A (2017) In vivo deep two-photon imaging of neural circuits with the fluorescent Ca 2+ indicator Cal-590. J Physiol 595:3097–3105CrossRefPubMedGoogle Scholar
  36. 36.
    Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rochefort NL, Garaschuk O, Milos R-I et al (2009) Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci U S A 106:15049–15054CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990CrossRefPubMedGoogle Scholar
  39. 39.
    Schulz K, Sydekum E, Krueppel R et al (2012) Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 9:597–602CrossRefPubMedGoogle Scholar
  40. 40.
    Badura A, Sun XR, Giovannucci A et al (2014) Fast calcium sensor proteins for monitoring neural activity. Neurophotonics 1:25008CrossRefGoogle Scholar
  41. 41.
    Akemann W, Song C, Mutoh H et al (2015) Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins. Neurophotonics 2:21008CrossRefGoogle Scholar
  42. 42.
    Knöpfel T, Gallero-Salas Y, Song C (2015) Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr Opin Chem Biol 27:75–83CrossRefPubMedGoogle Scholar
  43. 43.
    Yang HH, St-Pierre F (2016) Genetically encoded voltage indicators: opportunities and challenges. J Neurosci 36:9977–9989CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Buxton RB (2013) The physics of functional magnetic resonance imaging (fMRI). Reports. Prog Phys 76:96601CrossRefGoogle Scholar
  45. 45.
    Kim S-G, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188–1206CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lee JH, Durand R, Gradinaru V et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Desai M, Kahn I, Knoblich U et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405CrossRefPubMedGoogle Scholar
  48. 48.
    Liang Z, Watson GDR, Alloway KD et al (2015) Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. NeuroImage 117:114–123CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Aksenov DP, Li L, Miller MJ et al (2016) Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals. Eur J Neurosci 44:2722–2729CrossRefPubMedGoogle Scholar
  50. 50.
    Gerits A, Farivar R, Rosen BR et al (2012) Optogenetically induced behavioral and functional network changes in primates. Curr Biol 22:1722–1726CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Takata N, Yoshida K, Komaki Y et al (2015) Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI. PLoS One 10:e0121417CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Anenberg E, Chan AW, Xie Y et al (2015) Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab 35:1579–1586CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lohani S, Poplawsky AJ, Kim S-G et al (2017) Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol Psychiatry 22:585–594CrossRefPubMedGoogle Scholar
  54. 54.
    Kahn I, Desai M, Knoblich U et al (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086–15091CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kahn I, Knoblich U, Desai M et al (2013) Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res 1511:33–45CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Iordanova B, Vazquez AL, Poplawsky AJ et al (2015) Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex. J Cereb Blood Flow Metab 35:922–932CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Albers F, Schmid F, Wachsmuth L, et al. (2016) Line scanning fMRI reveals earlier onset of optogenetically evoked BOLD response in rat somatosensory cortex as compared to sensory stimulation. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2016.12.059 (in press)
  58. 58.
    Uhlirova H, Kılıç K, Tian P, et al. (2016) Cell type specificity of neurovascular coupling in cerebral cortex. elife 5:e14315  https://doi.org/10.7554/eLife.14315
  59. 59.
    Liu J, Lee HJ, Weitz AJ et al (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. elife 4:e09215PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bernal-Casas D, Lee HJ, Weitz AJ et al (2017) Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 93:522–532.e5CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stroh A, Tsai H-C, Wang L-P et al (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29:78–88CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Byers B, Lee HJ, Liu J et al (2015) Direct in vivo assessment of human stem cell graft–host neural circuits. NeuroImage 114:328–337CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schmid F, Wachsmuth L, Schwalm M et al (2016) Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings. J Cereb Blood Flow Metab 36:1885–1900CrossRefPubMedGoogle Scholar
  64. 64.
    Christie IN, Wells JA, Southern P et al (2013) fMRI response to blue light delivery in the naïve brain: Implications for combined optogenetic fMRI studies. NeuroImage 66:634–641CrossRefPubMedGoogle Scholar
  65. 65.
    Christie IN, Wells JA, Kasparov S et al (2017) Volumetric spatial correlations of neurovascular coupling studied using single pulse opto-fMRI. Sci Rep 7:41583CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schmid F, Wachsmuth L, Albers F et al (2017) True and apparent optogenetic BOLD fMRI signals. Magn Reson Med 77:126–136CrossRefPubMedGoogle Scholar
  67. 67.
    Han X, Chow BY, Zhou H et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rungta RL, Osmanski B-F, Boido D et al (2017) Light controls cerebral blood flow in naive animals. Nat Commun 8:14191CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Liang Z, Ma Y, Watson GDR et al (2017) Simultaneous GCaMP6-based fiber photometry and fMRI in rats. J Neurosci Methods 289:31–38CrossRefPubMedGoogle Scholar
  70. 70.
    Hamel EJO, Grewe BF, Parker JG et al (2015) Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86:140–159CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Papadopoulos IN, Farahi S, Moser C et al (2013) High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed Opt Express 4:260–270CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yu X, Qian C, Chen D et al (2014) Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat Methods 11:55–58CrossRefPubMedGoogle Scholar
  73. 73.
    Williams KA, Magnuson M, Majeed W et al (2010) Comparison of α-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 28:995–1003CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Doty FD, Entzminger G, Kulkarni J et al (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325CrossRefPubMedGoogle Scholar
  75. 75.
    Stroh A, Adelsberger H, Groh A et al (2013) Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77:1136–1150CrossRefPubMedGoogle Scholar
  76. 76.
    Allen brain atlas: mouse connectivity. http://connectivity.brain-map.org/. Accessed 09/07/2017
  77. 77.
    Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.Department of Clinical RadiologyUniversity Hospital MünsterMünsterGermany

Personalised recommendations