Molecular Imaging and Biology

, Volume 20, Issue 5, pp 716–731 | Cite as

Standardization of Small Animal Imaging—Current Status and Future Prospects

  • Julia G. Mannheim
  • Firat Kara
  • Janine Doorduin
  • Kerstin Fuchs
  • Gerald Reischl
  • Sayuan Liang
  • Marleen Verhoye
  • Felix Gremse
  • Laura Mezzanotte
  • Marc C. Huisman
Review Article


The benefit of small animal imaging is directly linked to the validity and reliability of the collected data. If the data (regardless of the modality used) are not reproducible and/or reliable, then the outcome of the data is rather questionable. Therefore, standardization of the use of small animal imaging equipment, as well as of animal handling in general, is of paramount importance. In a recent paper, guidance for efficient small animal imaging quality control was offered and discussed, among others, the use of phantoms in setting up a quality control program (Osborne et al. 2016). The same phantoms can be used to standardize image quality parameters for multi-center studies or multi-scanners within center studies. In animal experiments, the additional complexity due to animal handling needs to be addressed to ensure standardized imaging procedures. In this review, we will address the current status of standardization in preclinical imaging, as well as potential benefits from increased levels of standardization.

Key words

Small animal imaging Standardization Reproducibility Reliability PET CT SPECT MRI OI Animal handling 



We gratefully thank the ESMI for their support and the possibility of establishing a study group for standardization in small animal imaging as a platform for scientific exchange within the society.

This study was supported by FWO and Stichting Alzheimer Onderzoek (SAO-FRA, Grant Nr 14027). Firat Kara is holder of an “FWO Postdoc” grant from the Fund for Scientific Research - Flanders (FWO, Vlaanderen, Belgium). F. Gremse was supported by the German Ministry for Education and Research (BioPhotonics/13N13355) with co-funding from the European Union Seventh Framework Program.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40:157–165PubMedCrossRefGoogle Scholar
  2. 2.
    Woolfenden JM, Liu Z (2005) Biomedical significance of small-animal imaging. In: Kupinski MA, Barrett HH (eds) Small-animal SPECT imaging. Boston, Springer, pp 1–8Google Scholar
  3. 3.
    Mariani G, Bruselli L, Kuwert T et al (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985PubMedCrossRefGoogle Scholar
  4. 4.
    Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2:12CrossRefGoogle Scholar
  5. 5.
    Lopci E, Nanni C, Castellucci P et al (2010) Imaging with non-FDG PET tracers: outlook for current clinical applications. Insights Imaging 1:373–385PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Schmitz J, Schwab J, Schwenck J et al (2016) Decoding intratumoral heterogeneity of breast cancer by multiparametric in vivo imaging: a translational study. Cancer Res 76:5512–5522PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pagani E, Bizzi A, Di Salle F et al (2008) Basic concepts of advanced MRI techniques. Neurol Sci 29(Suppl 3):290–295PubMedCrossRefGoogle Scholar
  8. 8.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory,experimental design and data analysis - a technical review. NMR Biomed 15:456–467Google Scholar
  9. 9.
    Brovko L (2010) Bioluminescence and fluorescence for in vivo imaging. SPIE Press, BellinghamCrossRefGoogle Scholar
  10. 10.
    Roda A (2011) Chemiluminescence and bioluminescence: past, present and future. Royal Society of Chemistry, CambridgeGoogle Scholar
  11. 11.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79PubMedCrossRefGoogle Scholar
  12. 12.
    Dhawan AP, D'Alessandro B, Fu X (2010) Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 3:69–92PubMedCrossRefGoogle Scholar
  13. 13.
    Buzug TM (2004) Einleitung. In Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion. Berlin: Springer Berlin Heidelberg, pp 1–10Google Scholar
  14. 14.
    Liguori C, Frauenfelder G, Massaroni C et al (2015) Emerging clinical applications of computed tomography. Med Devices (Auckl) 8:265–278Google Scholar
  15. 15.
    Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39CrossRefGoogle Scholar
  16. 16.
    Paulus MJ, Gleason SS, Easterly ME, Foltz CJ (2001) A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim 30:36–45Google Scholar
  17. 17.
    Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116:116–126PubMedCrossRefGoogle Scholar
  18. 18.
    Macleod MR, Michie S, Roberts I et al (2014) Biomedical research: increasing value, reducing waste. Lancet 383:101–104PubMedCrossRefGoogle Scholar
  19. 19.
    Al-Shahi Salman R, Beller E, Kagan J et al (2014) Increasing value and reducing waste in biomedical research regulation and management. Lancet 383:176–185PubMedCrossRefGoogle Scholar
  20. 20.
    O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186PubMedCrossRefGoogle Scholar
  21. 21.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46:1016–1022PubMedCrossRefGoogle Scholar
  22. 22.
    Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  23. 23.
    Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486PubMedCrossRefGoogle Scholar
  25. 25.
    Osborne DR, Kuntner C, Berr S, Stout D (2017) Guidance for efficient small animal imaging quality control. Mol Imaging Biol 19:485–498PubMedCrossRefGoogle Scholar
  26. 26.
    Suomalainen A, Kiljunen T, Kaser Y et al (2009) Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 38:367–378PubMedCrossRefGoogle Scholar
  27. 27.
    Song WY, Kamath S, Ozawa S et al (2008) A dose comparison study between XVI and OBI CBCT systems. Med Phys 35:480–486PubMedCrossRefGoogle Scholar
  28. 28.
    Willekens I, Buls N, Lahoutte T et al (2010) Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging 5:201–207PubMedCrossRefGoogle Scholar
  29. 29.
    Miyahara N, Kokubo T, Hara Y et al (2016) Evaluation of X-ray doses and their corresponding biological effects on experimental animals in cone-beam micro-CT scans (R-mCT2). Radiol Phys Technol 9:60–68PubMedCrossRefGoogle Scholar
  30. 30.
    Osborne DR, Yan S, Stuckey A et al (2012) Characterization of X-ray dose in murine animals using microCT, a new low-dose detector and nanoDot dosimeters. PLoS One 7:e49936PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Staude A, Goebbels J (2011) Determining the spatial resolution in computed tomography—comparison of MTF and line-pair structures. In International symposium on digital industrial radiology and computed tomography (Proceedings). pp 1-9Google Scholar
  32. 32.
    Fahey FH (2002) Data acquisition in PET imaging. J Nucl Med Technol 30:39–49PubMedGoogle Scholar
  33. 33.
    Bailey DL, Karp JS, Surti S (2005) Physics and instrumentation in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London, pp 13–39CrossRefGoogle Scholar
  34. 34.
    Tai YC, Laforest R (2005) Instrumentation aspects of animal PET. Annu Rev Biomed Eng 7:255–285PubMedCrossRefGoogle Scholar
  35. 35.
    Peremans K, Cornelissen B, Van Den Bossche B et al (2005) A review of small animal imaging planar and pinhole spect Gamma camera imaging. Vet Radiol Ultrasound 46:162–170PubMedCrossRefGoogle Scholar
  36. 36.
    Wirrwar A, Schramm N, Vosberg H, Muller-Gartner HW (2001) High resolution SPECT in small animal research. Rev Neurosci 12:187–193PubMedCrossRefGoogle Scholar
  37. 37.
    Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–61Google Scholar
  38. 38.
    Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663Google Scholar
  39. 39.
    Hutchins GD, Miller MA, Soon VC, Receveur T (2008) Small animal PET imaging. ILAR J 49:54–65PubMedCrossRefGoogle Scholar
  40. 40.
    Constantinescu CC, Mukherjee J (2009) Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54:2885–2899PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Herrmann K, Dahlbom M, Nathanson D et al (2013) Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med 54:1162–1167PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Deleye S, Van Holen R, Verhaeghe J, Vandenberghe S, Stroobants S, Staelens S (2013) Performance evaluation of small-animal multipinhole muSPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging 40:744–758Google Scholar
  44. 44.
    Sanchez F, Orero A, Soriano A, et al. (2013) ALBIRA: a small animal PETSPECTCT imaging system. Med Phys 40:051906Google Scholar
  45. 45.
    Boisson F, Zahra D, Parmar A, et al. (2013) Imaging capabilities of the Inveon SPECT system using single-and multipinhole collimators. J Nucl Med 54:1833–1840Google Scholar
  46. 46.
    Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedCrossRefGoogle Scholar
  47. 47.
    Boellaard R, Delgado-Bolton R, Oyen WJ et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354PubMedCrossRefGoogle Scholar
  48. 48.
    Aide N, Lasnon C, Veit-Haibach P et al (2017) EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 44:17–31PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SPubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Landis SC, Amara SG, Asadullah K et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Anderson JA, Eijkholt M, Illes J (2013) Ethical reproducibility: towards transparent reporting in biomedical research. Nat Methods 10:843–845PubMedCrossRefGoogle Scholar
  52. 52.
    Mannheim JG, Schmid AM, Pichler BJ (2017) Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol.
  53. 53.
    Mannheim JG, Judenhofer MS, Schmid A et al (2012) Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner. Phys Med Biol 57:3981–3993PubMedCrossRefGoogle Scholar
  54. 54.
    Versuchstierkunde GfTV Empfehlung zur Substanzapplikation bei Versuchstieren. (Accessed 21 Jan 2015)
  55. 55.
    Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25:173–176PubMedCrossRefGoogle Scholar
  56. 56.
    Stout D, Berr SS, LeBlanc A et al (2013) Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging 12:1–15PubMedCrossRefGoogle Scholar
  57. 57.
    Jezzard P, Song AW (1996) Technical foundations and pitfalls of clinical fMRI. NeuroImage 4:S63–S75PubMedCrossRefGoogle Scholar
  58. 58.
    Oz G, Alger JR, Barker PB et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Currie S, Hoggard N, Craven IJ et al (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89:209–223PubMedCrossRefGoogle Scholar
  60. 60.
    Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imaging 35:1038–1054PubMedCrossRefGoogle Scholar
  61. 61.
    Mansfield P, Grannell PK (1973) NMR ‘diffraction’ in solids? J Phys C Solid State Phys 6:L422CrossRefGoogle Scholar
  62. 62.
    Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  63. 63.
    Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38CrossRefGoogle Scholar
  64. 64.
    Bloch F (1946) Nuclear induction. Phys Rev 70:460–474CrossRefGoogle Scholar
  65. 65.
    Marzola P, Osculati F, Sbarbati A (2003) High field MRI in preclinical research. Eur J Radiol 48:165–170PubMedCrossRefGoogle Scholar
  66. 66.
    Sharma R (2009) Microimaging of hairless rat skin by magnetic resonance at 900 MHz. Magn Reson Imaging 27:240–255PubMedCrossRefGoogle Scholar
  67. 67.
    Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54:1825–1832PubMedCrossRefGoogle Scholar
  68. 68.
    Wu Y, Catana C, Farrell R et al (2009) PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci 56:574–580PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hawkes RC, Fryer TD, Siegel S et al (2010) Preliminary evaluation of a combined microPET-MR system. Technol Cancer Res Treat 9:53–60PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ahrens ET, Narasimhan PT, Nakada T, Jacobs RE (2002) Small animal neuroimaging using magnetic resonance microscopy. Prog Nucl Magn Reson Spectrosc 40:275–306CrossRefGoogle Scholar
  71. 71.
    Friedman L, Glover GH, The FBIRN Consort (2006) Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33:471–481PubMedCrossRefGoogle Scholar
  72. 72.
    Ewers M, Teipel SJ, Dietrich O et al (2006) Multicenter assessment of reliability of cranial MRI. Neurobiol Aging 27:1051–1059PubMedCrossRefGoogle Scholar
  73. 73.
    Teipel S, Ewers M, Dietrich O et al (2006) Reliability of multicenter magnetic resonance imaging. Results of a phantom test and in vivo measurements by the German Dementia Competence Network. Nervenarzt 77(1086–1092):1094–1085Google Scholar
  74. 74.
    Schnack HG, van Haren NE, Hulshoff Pol HE et al (2004) Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Hum Brain Mapp 22:312–320PubMedCrossRefGoogle Scholar
  75. 75.
    Stocker T, Schneider F, Klein M et al (2005) Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237–246PubMedCrossRefGoogle Scholar
  76. 76.
    Zou KH, Greve DN, Wang M et al (2005) Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology 237:781–789PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chang L, Lee PL, Yiannoutsos CT et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage 23:1336–1347PubMedCrossRefGoogle Scholar
  78. 78.
    Mutsaerts HJMM, van Osch MJP, Zelaya FO et al (2015) Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies. NeuroImage 113:143–152PubMedCrossRefGoogle Scholar
  79. 79.
    van der Graaf M, Julia-Sape M, Howe FA et al (2008) MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed 21:148–158PubMedCrossRefGoogle Scholar
  80. 80.
    Brueggen K, Grothe MJ, Dyrba M et al (2017) The European DTI Study on Dementia—a multicenter DTI and MRI study on Alzheimer’s disease and mild cognitive impairment. NeuroImage 144:305–308PubMedCrossRefGoogle Scholar
  81. 81.
    Jovicich J, Czanner S, Greve D et al (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage 30:436–443PubMedCrossRefGoogle Scholar
  82. 82.
    Littmann A, Guehring J, Buechel C, Stiehl HS (2006) Acquisition-related morphological variability in structural MRI. Acad Radiol 13:1055–1061PubMedCrossRefGoogle Scholar
  83. 83.
    Jonckers E, Shah D, Hamaide J et al (2015) The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 6:231PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878PubMedCrossRefGoogle Scholar
  85. 85.
    Uludağ K, Uğurbil K, Berliner L (2015) fMRI: from nuclear spins to brain functions. SpringerGoogle Scholar
  86. 86.
    Jenkins BG (2012) Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. NeuroImage 62:1072–1085PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Inoue T, Majid T, Pautler RG (2011) Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci 22:675–694PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen JE, Glover GH (2015) Functional magnetic resonance imaging methods. Neuropsychol Rev 25:289–313PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545PubMedCrossRefGoogle Scholar
  90. 90.
    Detre JA, Wang JJ, Wang Z, Rao HY (2009) Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 22:348–355PubMedCrossRefGoogle Scholar
  91. 91.
    Ge YL, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. Am J Neuroradiol 26:1539–1547PubMedGoogle Scholar
  92. 92.
    Yang S, Law M, Zagzag D et al (2003) Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol 24:1554–1559PubMedGoogle Scholar
  93. 93.
    Haynes JD (2015) A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87:257–270PubMedCrossRefGoogle Scholar
  94. 94.
    Thomas ML, Brown GG, Thompson WK et al (2013) An application of item response theory to fMRI data: prospects and pitfalls. Psychiatry Res 212:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Davis T, Poldrack RA (2013) Measuring neural representations with fMRI: practices and pitfalls. Ann N Y Acad Sci 1296:108–134PubMedCrossRefGoogle Scholar
  96. 96.
    Eke A, Herman P, Sanganahalli BG et al (2012) Pitfalls in fractal time series analysis: fMRI BOLD as an exemplary case. Front Physiol 3:417PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8PubMedPubMedCentralGoogle Scholar
  99. 99.
    Haller S, Bartsch AJ (2009) Pitfalls in FMRI. Eur Radiol 19:2689–2706PubMedCrossRefGoogle Scholar
  100. 100.
    Amaro E Jr, Barker GJ (2006) Study design in fMRI: basic principles. Brain Cogn 60:220–232PubMedCrossRefGoogle Scholar
  101. 101.
    Schroeter A, Schlegel F, Seuwen A et al (2014) Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. NeuroImage 94:372–384PubMedCrossRefGoogle Scholar
  102. 102.
    Ramsey NF, Hoogduin H, Jansma JM (2002) Functional MRI experiments: acquisition, analysis and interpretation of data. Eur Neuropsychopharmacol 12:517–526PubMedCrossRefGoogle Scholar
  103. 103.
    Peeters R, Sunaert S (2015) Clinical BOLD fMRI and DTI: artifacts, tips, and tricks. In Clinical functional MRI: presurgical functional neuroimaging. Ed. Stippich C. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 313–336Google Scholar
  104. 104.
    Silva AC, Lee JH, Aoki L, Koretsky AR (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543PubMedCrossRefGoogle Scholar
  105. 105.
    Massaad CA, Pautler RG (2011) Manganese-enhanced magnetic resonance imaging (MEMRI). Methods Mol Biol 711:145–174PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chung MK, Worsley KJ, Robbins S et al (2003) Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18:198–213PubMedCrossRefGoogle Scholar
  107. 107.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821PubMedCrossRefGoogle Scholar
  108. 108.
    Symms M, Jager H, Schmierer K, Yousry T (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75:1235–1244PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30PubMedCrossRefGoogle Scholar
  110. 110.
    Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30:232–252PubMedCrossRefGoogle Scholar
  111. 111.
    Muskulus M, Scheenstra AEH, Braakman N et al (2009) Prospects for early detection of Alzheimers disease from serial MR images in transgenic mouse models. Curr Alzheimer Res 6:503–518PubMedCrossRefGoogle Scholar
  112. 112.
    Hartung MP, Grist TM, Francois CJ (2011) Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 13:19PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hajnal JV, Bryant DJ, Kasuboski L et al (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 16:841–844PubMedCrossRefGoogle Scholar
  114. 114.
    Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820PubMedCrossRefGoogle Scholar
  115. 115.
    Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do's and don’ts of diffusion MRI. NeuroImage 73:239–254PubMedCrossRefGoogle Scholar
  116. 116.
    Soares JM, Marques P, Alves V, Sousa N (2013) A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci 7:31PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Crawley AP, Henkelman RM (1987) Errors in T2 estimation using multislice multiple-echo imaging. Magn Reson Med 4:34–47PubMedCrossRefGoogle Scholar
  118. 118.
    Hu X, Norris DG (2004) Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6:157–184PubMedCrossRefGoogle Scholar
  119. 119.
    Majumdar S, Orphanoudakis SC, Gmitro A et al (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. II. Effects of static field inhomogeneity. Magn Reson Med 3:562–574PubMedCrossRefGoogle Scholar
  120. 120.
    Majumdar S, Orphanoudakis SC, Gmitro A et al (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med 3:397–417PubMedCrossRefGoogle Scholar
  121. 121.
    Santyr GE (1993) Magnetization transfer effects in multislice MR imaging. Magn Reson Imaging 11:521–532PubMedCrossRefGoogle Scholar
  122. 122.
    Anderson CM, Saloner D, Tsuruda JS et al (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623–629PubMedCrossRefGoogle Scholar
  123. 123.
    Vosshenrich R, Reimer P (2002) Artifacts and limitations. In: Arlart IP, Bongartz GM, Marchal G (eds) Magnetic resonance angiography. Springer, Berlin, pp 167–180CrossRefGoogle Scholar
  124. 124.
    Drost DJ, Riddle WR, Clarke GD, Group AMT (2002) Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys 29:2177–2197PubMedCrossRefGoogle Scholar
  125. 125.
    Duarte JM, Lei H, Mlynarik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage 61:342–362PubMedCrossRefGoogle Scholar
  126. 126.
    Kara F, Braakman N, van Buchem MA et al (2011) Prospects of magnetic resonance spectroscopy in mouse models of Alzheimer’s disease. Curr Med Imaging Rev 7:80–87CrossRefGoogle Scholar
  127. 127.
    De Graaf RA (2007) Single volume localization and water suppression. In: In vivo NMR spectroscopy principles and techniques. Chichester, West Sussex, England; Hoboken: Wiley, pp 297–348Google Scholar
  128. 128.
    Hurd RE (2009) Artifacts and pitfalls in MR spectroscopy. In: Waldman AD, Gillard JH, Barker PB (eds) Clinical MR neuroimaging: physiological and functional techniques. Cambridge University Press, Cambridge, pp 30–43CrossRefGoogle Scholar
  129. 129.
    Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381PubMedCrossRefGoogle Scholar
  130. 130.
    Vanhoutte G, Verhoye M, Van der Linden A (2006) Changing body temperature affects the T 2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med 55:1006–1012PubMedCrossRefGoogle Scholar
  131. 131.
    Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23:827–839PubMedCrossRefGoogle Scholar
  132. 132.
    Price RR, Axel L, Morgan T et al (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17:287–295PubMedCrossRefGoogle Scholar
  133. 133.
    Davids M, Zöllner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780PubMedCrossRefGoogle Scholar
  134. 134.
    Weisskoff RM (1996) Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36:643–645PubMedCrossRefGoogle Scholar
  135. 135.
    Guilfoyle DN, Gerum SV, Sanchez JL et al (2013) Functional connectivity fMRI in mouse brain at 7T using isoflurane. J Neurosci Methods 214:144–148PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Glover GH, Mueller BA, Turner JA et al (2012) Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J Magn Reson Imaging 36:39–54PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Glover G (2005) FBIRN Stability phantom QA proceduresGoogle Scholar
  138. 138.
    Teuho J, Saunavaara V, Teras M (2015) Long-term stability of the MR system of the Philips Ingenuity TF. Eur J Nucl Med Mol Imaging Phys 2:A22Google Scholar
  139. 139.
    Fu L, Fonov V, Pike B, et al. (2006) Automated analysis of multi-site MRI phantom data for the NIHPD project. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006 Proceedings, Part II, Eds. Larsen R, Nielsen M, Sporring J. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 144–151Google Scholar
  140. 140.
    Chen CC, Wan YL, Wai YY, Liu HL (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17:279–284PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    O'Callaghan J, Wells J, Richardson S et al (2014) Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging. PLoS One 9:e96568PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lee YC, Fullerton GD, Baiu C et al (2011) Preclinical multimodality phantom design for quality assurance of tumor size measurement. BMC Med Phys 11:1PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Price RA, JG. Clark, et al. (2015) Magnetic resonance imaging quality control manual. ACR American College of RadiologyGoogle Scholar
  144. 144.
    Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185CrossRefGoogle Scholar
  145. 145.
    Gremse F, Theek B, Kunjachan S et al (2014) Absorption reconstruction improves biodistribution assessment of fluorescent nanoprobes using hybrid fluorescence-mediated tomography. Theranostics 4:960–971PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Niwa K, Ichino Y, Kumata S et al (2010) Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 86:1046–1049PubMedCrossRefGoogle Scholar
  147. 147.
    Klose AD, Beattie BJ, Dehghani H et al (2010) In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration. Med Phys 37:329–338PubMedCrossRefGoogle Scholar
  148. 148.
    Baeten J, Niedre M, Dunham J, Ntziachristos V (2007) Development of fluorescent materials for diffuse fluorescence tomography standards and phantoms. Opt Express 15:8681–8694PubMedCrossRefGoogle Scholar
  149. 149.
    Gremse F, Doleschel D, Zafarnia S, et al. (2015) Hybrid microCT-FMT imaging and image analysis. J Vis Exp e52770Google Scholar
  150. 150.
    Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94PubMedCrossRefGoogle Scholar
  151. 151.
    Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531PubMedCrossRefGoogle Scholar
  152. 152.
    Evans MS, Chaurette JP, Adams ST Jr et al (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11:393–395PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Berger F, Paulmurugan R, Bhaumik S, Gambhir SS (2008) Uptake kinetics and biodistribution of 14C-D-luciferin—a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging 35:2275–2285PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Aswendt M, Adamczak J, Couillard-Despres S, Hoehn M (2013) Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One 8:e55662PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Lee KH, Byun SS, Paik JY et al (2003) Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 24:1003–1009PubMedCrossRefGoogle Scholar
  156. 156.
    Ergen C, Heymann F, Al Rawashdeh W et al (2017) Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 114:106–120PubMedCrossRefGoogle Scholar
  157. 157.
    Shi Y, Kunjachan S, Wu Z et al (2015) Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging. Nanomedicine (London) 10:1111–1125CrossRefGoogle Scholar
  158. 158.
    Theek B, Baues M, Ojha T et al (2016) Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Control Release 231:77–85PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Beztsinna N, Tsvetkova Y, Bartneck M et al (2016) Amphiphilic phospholipid-based riboflavin derivatives for tumor targeting nanomedicines. Bioconjug Chem 27:2048–2061PubMedCrossRefGoogle Scholar
  160. 160.
    Al Rawashdeh W, Zuo S, Melle A et al (2017) Noninvasive assessment of elimination and retention using CT-FMT and kinetic whole-body modeling. Theranostics 7:1499–1510PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Rosenhain S, Al Rawashdeh W, Kiessling F, Gremse F (2016) Sensitivity and accuracy of hybrid fluorescence-mediated tomography in deep tissue regions. J Biophotonics.
  162. 162.
    Chaudhari AJ, Darvas F, Bading JR et al (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441PubMedCrossRefGoogle Scholar
  163. 163.
    Vanhove C, Bankstahl JP, Kramer SD et al (2015) Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. Eur J Nucl Med Mol Imaging Phys 2:31Google Scholar
  164. 164.
    Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262PubMedCrossRefGoogle Scholar
  165. 165.
    Fuchs K, Kukuk D, Reischl G et al (2012) Oxygen breathing affects 3′-deoxy-3′-18F-fluorothymidine uptake in mouse models of arthritis and cancer. J Nucl Med 53:823–830PubMedCrossRefGoogle Scholar
  166. 166.
    Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26PubMedCrossRefGoogle Scholar
  167. 167.
    Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, part I: anesthetic considerations in preclinical research. ILAR J 53:E55–E69PubMedCrossRefGoogle Scholar
  168. 168.
    Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, part II: anesthetic considerations in preclinical imaging studies. ILAR J 53:E70–E81PubMedCrossRefGoogle Scholar
  169. 169.
    Kohn DF (1997) Anesthesia and analgesia in laboratory animals. Academic Press, CambridgeGoogle Scholar
  170. 170.
    Flecknell P (2015) Laboratory animal anaesthesia. Elsevier ScienceGoogle Scholar
  171. 171.
    Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMedGoogle Scholar
  172. 172.
    Eintrei C, Sakoloff E, Smith CB (1999) Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 82:596–602PubMedCrossRefGoogle Scholar
  173. 173.
    Abdel el Motal SM, Sharp GW (1985) Inhibition of glucose-induced insulin release by xylazine. Endocrinology 116:2337–2340PubMedCrossRefGoogle Scholar
  174. 174.
    Kohro S, Hogan QH, Nakae Y et al (2001) Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95:1435–1340PubMedCrossRefGoogle Scholar
  175. 175.
    Gao YR, Ma Y, Zhang Q et al (2017) Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153:382–398PubMedCrossRefGoogle Scholar
  176. 176.
    Shah D, Deleye S, Verhoye M et al (2016) Resting-state functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity between commonly used mouse strains. NeuroImage 125:571–577PubMedCrossRefGoogle Scholar
  177. 177.
    Wahlsten D, Metten P, Phillips TJ et al (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311PubMedCrossRefGoogle Scholar
  178. 178.
    Ismail N, Garas P, Blaustein JD (2011) Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-alpha expression in CD-1 female mice. Horm Behav 59:565–571PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47:364–369PubMedCrossRefGoogle Scholar
  180. 180.
    Laroche J, Gasbarro L, Herman JP, Blaustein JD (2009) Enduring influences of peripubertal/adolescent stressors on behavioral response to estradiol and progesterone in adult female mice. Endocrinology 150:3717–3725PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Laroche J, Gasbarro L, Herman JP, Blaustein JD (2009) Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology 150:2351–2358PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Gonder JC, Laber K (2007) A renewed look at laboratory rodent housing and management. ILAR J 48:29–36PubMedCrossRefGoogle Scholar
  183. 183.
    Council NR (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington, DCGoogle Scholar
  184. 184.
    Baumans V, Van Loo PL (2013) How to improve housing conditions of laboratory animals: the possibilities of environmental refinement. Vet J 195:24–32PubMedCrossRefGoogle Scholar
  185. 185.
    Sorge RE, Martin LJ, Isbester KA et al (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11:629–632PubMedCrossRefGoogle Scholar
  186. 186.
    Bhang H-E, Tsuchiya N, Sysa-Shah P, Winkelmann C T, Gabrielson K (2013) In vivo small animal imaging: a comparison with gross and histopathologic observations in animal models. In: Haschek and Rousseaux’s handbook of toxicologic pathology. Elsevier Inc., Amsterdam, pp 287–315.
  187. 187.
    Chen H, Thorne SH (2012) Practical methods for molecular in vivo optical imaging. Curr Protoc Cytom 59:12 24 1–12 24 11Google Scholar
  188. 188.
    Sevick-Muraca EM, Rasmussen JC (2008) Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine. J Biomed Opt 13:041303PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261PubMedCrossRefGoogle Scholar
  190. 190.
    Rampon C, Tang YP, Goodhouse J et al (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244PubMedCrossRefGoogle Scholar
  191. 191.
    Wurbel H (2002) Behavioral phenotyping enhanced—beyond (environmental) standardization. Genes Brain Behav 1:3–8PubMedCrossRefGoogle Scholar
  192. 192.
    van der Staay FJ, Steckler T (2002) The fallacy of behavioral phenotyping without standardisation. Genes Brain Behav 1:9–13PubMedCrossRefGoogle Scholar
  193. 193.
    Giedd JN, Raznahan A, Mills KL, Lenroot RK (2012) Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ 3:19PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Prendergast BJ, Onishi KG, Zucker I (2014) Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 40:1–5PubMedCrossRefGoogle Scholar
  195. 195.
    Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31:3324–3329PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Mannheim JG, Schlichthaerle T, Kuebler L et al (2016) Comparison of small animal CT contrast agents. Contrast Media Mol Imaging 11:272–284PubMedCrossRefGoogle Scholar
  197. 197.
    Mahling M, Fuchs K, Thaiss WM et al (2015) A comparative pO2 probe and [18F]-fluoro-azomycinarabino-furanoside ([18F]FAZA) PET study reveals anesthesia-induced impairment of oxygenation and perfusion in tumor and muscle. PLoS One 10:e0124665PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Woo SK, Lee TS, Kim KM et al (2008) Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35:143–150PubMedCrossRefGoogle Scholar
  199. 199.
    Flores JE, McFarland LM, Vanderbilt A et al (2008) The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imaging Biol 10:192–200PubMedCrossRefGoogle Scholar
  200. 200.
    Chan LW, Hapdey S, English S et al (2006) The influence of tumor oxygenation on (18)F-FDG (fluorine-18 deoxyglucose) uptake: a mouse study using positron emission tomography (PET). Radiat Oncol 1:3PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Lee KH, Ko BH, Paik JY et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46:1531–1536PubMedGoogle Scholar
  202. 202.
    Toyama H, Ichise M, Liow JS et al (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256PubMedCrossRefGoogle Scholar
  203. 203.
    Maier FC, Wehrl HF, Schmid AM et al (2014) Longitudinal PET-MRI reveals beta-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 20:1485–1492PubMedCrossRefGoogle Scholar
  204. 204.
    Walker M, Ehrlichmann W, Stahlschmidt A et al (2016) In vivo evaluation of 11C-DASB for quantitative SERT imaging in rats and mice. J Nucl Med 57:115–121PubMedCrossRefGoogle Scholar
  205. 205.
    Fischer K, Sossi V, Schmid A et al (2011) Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med 52:1133–1141PubMedCrossRefGoogle Scholar
  206. 206.
    McConville P (2011) Small animal preparation and handling in MRI. Methods Mol Biol 771:89–113PubMedCrossRefGoogle Scholar
  207. 207.
    Jonckers E, Delgado y Palacios R, Shah D et al (2014) Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 72:1103–1112PubMedCrossRefGoogle Scholar
  208. 208.
    Lahti KM, Ferris CF, Li F et al (1999) Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med 41:412–416PubMedCrossRefGoogle Scholar
  209. 209.
    Hodkinson DJ, de Groote C, McKie S et al (2012) Differential effects of anaesthesia on the phMRI response to acute ketamine challenge. Br J Med Med Res 2:373–385PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Haensel JX, Spain A, Martin C (2015) A systematic review of physiological methods in rodent pharmacological MRI studies. Psychopharmacology 232:489–499PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Grandjean J, Schroeter A, Batata I, Rudin M (2014) Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. NeuroImage 102(Pt 2):838–847PubMedCrossRefGoogle Scholar
  212. 212.
    Huang SM, Wu YL, Peng SL et al (2016) Inter-Strain Differences in Default Mode Network: a resting state fMRI study on spontaneously hypertensive rat and Wistar Kyoto rat. Sci Rep 6:21697PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Chen XJ, Kovacevic N, Lobaugh NJ et al (2006) Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI. NeuroImage 29:99–105PubMedCrossRefGoogle Scholar
  214. 214.
    Schwarcz A, Natt O, Watanabe T et al (2003) Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 49:822–827PubMedCrossRefGoogle Scholar
  215. 215.
    Henckens MJ, van der Marel K, van der Toorn A et al (2015) Stress-induced alterations in large-scale functional networks of the rodent brain. NeuroImage 105:312–322PubMedCrossRefGoogle Scholar
  216. 216.
    Liang Z, King J, Zhang N (2014) Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. NeuroImage 103:485–491PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Goelman G, Ilinca R, Zohar I, Weinstock M (2014) Functional connectivity in prenatally stressed rats with and without maternal treatment with ladostigil, a brain-selective monoamine oxidase inhibitor. Eur J Neurosci 40:2734–2743PubMedCrossRefGoogle Scholar
  218. 218.
    Thigpen JE, Setchell KD, Kissling GE et al (2013) The estrogenic content of rodent diets, bedding, cages, and water bottles and its effect on bisphenol A studies. J Am Assoc Lab Anim Sci 52:130–141PubMedPubMedCentralGoogle Scholar
  219. 219.
    Domey J, Teichgraber U, Hilger I (2015) Gold nanoparticles allow detection of early-stage edema in mice via computed tomography imaging. Int J Nanomedicine 10:3803–3814PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Kunjachan S, Pola R, Gremse F et al (2014) Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 14:972–981PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kunjachan S, Gremse F, Theek B et al (2013) Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano 7:252–262PubMedCrossRefGoogle Scholar
  222. 222.
    Foster B, Bagci U, Mansoor A et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96PubMedCrossRefGoogle Scholar
  223. 223.
    Gremse F, Stark M, Ehling J et al (2016) Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 6:328–341PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Baiker M, Milles J, Dijkstra J et al (2010) Atlas-based whole-body segmentation of mice from low-contrast micro-CT data. Med Image Anal 14:723–737PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Julia G. Mannheim
    • 1
  • Firat Kara
    • 2
  • Janine Doorduin
    • 3
  • Kerstin Fuchs
    • 1
  • Gerald Reischl
    • 1
  • Sayuan Liang
    • 2
  • Marleen Verhoye
    • 2
  • Felix Gremse
    • 4
  • Laura Mezzanotte
    • 5
  • Marc C. Huisman
    • 6
  1. 1.Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyEberhard Karls University TuebingenTuebingenGermany
  2. 2.Bio-Imaging LabUniversity of AntwerpAntwerpBelgium
  3. 3.Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  4. 4.Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
  5. 5.Optical Molecular Imaging, Department of RadiologyErasmus Medical CenterRotterdamThe Netherlands
  6. 6.Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations