Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging


Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques—but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1.
Fig. 2.


  1. 1.

    Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM (2013) Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging 32:338–347

  2. 2.

    Lu K, Goodwill P, Zheng B, Conolly S (2015) Reshaping the 2D MPI PSF to be isotropic and sharp using vector acquisition and equalization. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, pp 1–1

  3. 3.

    Zhang W, Zheng B, Goodwill P, Conolly S (2015) A custom low-noise preamplifier for magnetic particle imaging. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). pp 1–1

  4. 4.

    Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

  5. 5.

    Goodwill PW, Conolly SM (2010) The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:1851–1859

  6. 6.

    Weizenecker J, Gleich B, Rahmer J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10

  7. 7.

    Neuwelt E a, Hamilton BE, Varallyay CG et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474

  8. 8.

    Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319

  9. 9.

    Spinowitz BS, Kausz AT, Baptista J et al (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19:1599–1605

  10. 10.

    Vasanawala SS, Nguyen K-L, Hope MD et al (2016) Safety and technique of ferumoxytol administration for MRI. Magn Reson Med 75:2107–2111

  11. 11.

    Antoch G, Freudenberg LS, Beyer T et al (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 45(Suppl 1):56S–65S

  12. 12.

    Gleich B, Weizenecker J, Borgert J (2008) Experimental results on fast 2D-encoded magnetic particle imaging. Phys Med Biol 53:N81–N84

  13. 13.

    Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:1231–1237

  14. 14.

    Goodwill PW, Lu K, Zheng B, Conolly SM (2012) An x-space magnetic particle imaging scanner. Rev Sci Instrum 83:033708

  15. 15.

    Vogel P, Ruckert MA, Klauer P et al (2014) Traveling wave magnetic particle imaging. IEEE Trans Med Imaging 33:400–407

  16. 16.

    Saritas EU, Goodwill PW, Croft LR et al (2013) Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 229:116–126

  17. 17.

    Rahmer J, Weizenecker J, Gleich B, Borgert J (2009) Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 9:4

  18. 18.

    Goodwill PW, Conolly SM (2011) Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imaging 30:1581–1590

  19. 19.

    Goodwill PW, Konkle JJ, Zheng B et al (2012) Projection x-space magnetic particle imaging. IEEE Trans Med Imaging 31:1076–1085

  20. 20.

    Konkle JJ, Goodwill PW, Hensley DW et al (2015) A convex formulation for magnetic particle imaging x-space reconstruction. PLoS One 10:e0140137

  21. 21.

    Ferguson RM, Khandhar AP, Kemp SJ et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084

  22. 22.

    Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging (invited). J Appl Phys 111:7B318–7B3185.

  23. 23.

    Rahmer J, Antonelli A, Sfara C et al (2013) Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys Med Biol 58:3965–3977

  24. 24.

    Zheng B, Vazin T, Goodwill PW et al (2015) Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 5:14055

  25. 25.

    Zheng B, von See MP, Yu E et al (2016) Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6:291–301

  26. 26.

    Vogel P, Rückert MA, Klauer P et al (2016) First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys Med Biol 61:6620–6634

  27. 27.

    Saritas EU, Goodwill PW, Zhang GZ, Conolly SM (2013) Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging 32:1600–1610

  28. 28.

    Saritas EU, Goodwill PW, Conolly SM (2015) Effects of pulse duration on magnetostimulation thresholds. Med Phys 42:3005–3012

  29. 29.

    Schmale I, Gleich B, Schmidt J, et al. (2013) Human PNS and SAR study in the frequency range from 24 to 162 kHz. In: 2013 International Workshop on Magnetic Particle Imaging (IWMPI)., pp 1–1

  30. 30.

    Borgert J, Schmidt JD, Schmale I et al (2013) Perspectives on clinical magnetic particle imaging. Biomed Tech 58:551–556

  31. 31.

    Yu EY, Bishop M, Zheng B et al (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. doi:10.1021/acs.nanolett.6b04865

  32. 32.

    Zhou XY, Jeffris K, Yu E et al (2017) First in vivo magnetic particle imaging of lung perfusion in rats. Phys Med Biol. doi:10.1088/1361-6560/aa616c

  33. 33.

    Lu K, Goodwill PW, Saritas EU et al (2013) Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging 32:1565–1575

  34. 34.

    Konkle JJ, Goodwill PW, Saritas EU et al (2013) Twenty-fold acceleration of 3D projection reconstruction MPI. Biomed Tech 58:565–576

  35. 35.

    Wawrzik T, Kuhlmann C, Ludwig F, Schilling M (2013) Scanner setup and reconstruction for three-dimensional magnetic particle imaging. In: Weaver JB, Molthen RC (eds) SPIE medical imaging. International Society for Optics and Photonics, p 86721B–86721B–8

  36. 36.

    Buzug TM, Bringout G, Erbe M et al (2012) Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys 22:323–334

  37. 37.

    Murase K, Hiratsuka S, Song R, Takeuchi Y (2014) Development of a system for magnetic particle imaging using neodymium magnets and gradiometer. Jpn J Appl Phys 53:067001

  38. 38.

    Panagiotopoulos N, Duschka RL, Ahlborg M et al (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114

  39. 39.

    Yu E, Goodwill P, Tay ZW, et al (2016) In vivo projection imaging and 3D computed tomography magnetic particle imaging with a high resolution 6 T/m field free line electromagnet. Proceedings of world molecular imaging congress 2016

  40. 40.

    Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 14:431–444

  41. 41.

    MPI - Bruker’s revolutionary modality for preclinical imaging. In: Bruker Biospin. Accessed 24 Jan 2017

  42. 42.

    MOMENTUM™ Imager Magnetic Particle Imaging System. In: Magnetic Insight. Accessed 24 Jan 2017

  43. 43.

    Schmale I, Gleich B, Kanzenbach J, et al (2009) An introduction to the hardware of magnetic particle imaging. In: World congress on medical physics and biomedical engineering, September 7–12, 2009, Munich, Germany. Springer Berlin Heidelberg, pp 450–453

  44. 44.

    Schmale I, Gleich B, Borgert J, Weizenecker J (2010) JFET noise modelling for MPI receivers. Proceedings of IWMPI 148–153.

  45. 45.

    Khandhar AP, Keselman P, Kemp SJ et al (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nano 9:1299–1306

  46. 46.

    Bulte JWM, Walczak P, Janowski M et al (2015) Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1:91–97

  47. 47.

    Croft LR, Goodwill PW, Conolly SM (2012) Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging 31:2335–2342

  48. 48.

    Croft LR, Goodwill PW, Konkle JJ et al (2016) Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 43:424–435

  49. 49.

    Rahmer J, Halkola A, Gleich B et al (2015) First experimental evidence of the feasibility of multi-color magnetic particle imaging. Phys Med Biol 60:1775–1791

  50. 50.

    Hensley D, Goodwill P, Croft L, Conolly S (2015) Preliminary experimental x-space color MPI. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). pp 1–1

  51. 51.

    Hensley DW, Tay ZW, Dhavalikar R et al (2016) Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol. doi:10.1088/1361-6560/aa5601

  52. 52.

    Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging—guided hyperthermia (hMPI). Nano 8:12162–12169

  53. 53.

    Kuboyabu T, Yamawaki M, Aoki M, et al (2016) Quantitative evaluation of tumor early response to magnetic hyperthermia combined with vascular disrupting therapy using magnetic particle imaging. Int J Nanomed Nanosurg 2. doi 10.16966/2470-3206.114

  54. 54.

    Keselman P, Yu E, Zhou X et al (2017) Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys Med Biol. doi:10.1088/1361-6560/aa5f48

Download references


We are grateful for funding support from the Keck Foundation Grant 009323, NIH 1R01EB019458, NIH 1R24MH106053, and a UC Discovery Grant.

Author information

Correspondence to Bo Zheng.

Ethics declarations

Conflict of Interest

PWG and SMC are founders of Magnetic Insight. PWG, DWH, and JJK are employees of Magnetic Insight.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Yu, E., Orendorff, R. et al. Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging. Mol Imaging Biol 19, 385–390 (2017) doi:10.1007/s11307-017-1081-y

Download citation

Key words

  • Magnetic particle imaging
  • Superparamagnetic iron oxide
  • Interest group