Molecular Imaging and Biology

, Volume 19, Issue 6, pp 837–845 | Cite as

Synthesis and In Vitro and In Vivo Evaluation of [3H]LRRK2-IN-1 as a Novel Radioligand for LRRK2

  • Noeen Malik
  • Andrew N Gifford
  • Johan Sandell
  • Daniel Tuchman
  • Yu-Shin DingEmail author
Research Article



LRRK2 (leucine-rich repeat kinase 2) has recently been proven to be a promising drug target for Parkinson’s disease (PD) due to an apparent enhanced activity caused by mutations associated with familial PD. To date, there have been no reports in which a LRRK2 inhibitor has been radiolabeled and used for in in vitro or in vivo studies of LRRK2. In the present study, we radiolabeled the LRRK2 ligand, LRRK-IN-1, for the purposes of performing in vitro (IC50, K d , B max, autoradiography) and in vivo (biodistribution, and blocking experiments) evaluations in rodents and human striatum tissues.


[3H]LRRK2-IN-1 was prepared with high radiochemical purity (>99 %) and a specific activity of 41 Ci/mmol via tritium/hydrogen (T/H) exchange using Crabtree’s catalyst. For IC50, K d , and B max determination, LRRK2-IN-1 was used as a competing drug for nonspecific binding assessment. The specific binding of the tracer was further evaluated via an in vivo blocking study in mice with a potent LRRK2 inhibitor, Pf-06447475.


In vitro binding studies demonstrated a saturable binding site for [3H]LRRK2-IN-1 in rat kidney, rat brain striatum and human brain striatum with K d of 26 ± 3 and 43 ± 8, 48 ± 2 nM, respectively. In rat, the density of LRRK2 binding sites (B max) was higher in kidney (6.4 ± 0.04 pmol/mg) than in brain (2.5 ± 0.03 pmol/mg), however, in human brain striatum, the B max was 0.73 ± 0.01 pmol/mg protein. Autoradiography imaging in striatum of rat and human brain tissues gave results consistent with binding studies. In in vivo biodistribution and blocking studies in mice, co-administration with Pf-06447475 (10 mg/kg) reduced the uptake of [3H]LRRK2-IN-1 (%ID/g) by 50–60% in the kidney or brain.


The high LRRK2 brain density observed in our study suggests the feasibility for positron emission tomography imaging of LRRK2 (a potential target) with radioligands of higher affinity and specificity.

Key Words

LRRK2 Parkinson’s disease LRRK2-IN-1 PET Autoradiography Bmax Bmax/Kd 



The work is supported by the Center for Advanced Imaging Innovation and Research (CAI2R, at New York University School of Medicine is supported by NIH/NIBIB grant number P41 EB017183. We would like to acknowledge the expert assistance of Mr. Yianni Piyis (METIS Laboratories) for help with the sectioning.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bosgraaf L, van Haastert PJ (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 1643:5–10CrossRefPubMedGoogle Scholar
  2. 2.
    Gilsbach BK, Kortholt A (2014) Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation. Front Mol Neurosci 7:32CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    West AB, Moore DJ, Biskup S et al (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102:16842–16847CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smith WW, Pei Z, Jiang H et al (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233CrossRefPubMedGoogle Scholar
  5. 5.
    Bonifati V (2006) The LRRK2-G2019S mutation: opening a novel era in Parkinson’s disease genetics. Eur J Hum Genet 14:1061–1062CrossRefPubMedGoogle Scholar
  6. 6.
    Luzón-Toro B, Rubio de la Torre E, Delgado A (2007) Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Hum Mol Genet 16:2031–2039CrossRefPubMedGoogle Scholar
  7. 7.
    Jaleel M, Nichols RJ, Deak M et al (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Anand VS, Reichling LJ, Lipinski K et al (2009) Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. FEBS J 276:466–478CrossRefPubMedGoogle Scholar
  9. 9.
    Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600CrossRefPubMedGoogle Scholar
  10. 10.
    Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607CrossRefPubMedGoogle Scholar
  11. 11.
    Adams JR, van Netten H, Schulzer M et al (2005) PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 128(Pt 12):2777–2785CrossRefPubMedGoogle Scholar
  12. 12.
    Guo L, Gandhi PN, Wang W et al (2007) The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 313:3658–3670CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cookson MR, Bandmann O (2010) Parkinson’s disease: insights from pathways. Hum Mol Genet 19:R21–R27CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11:791–797CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Daechsel JC, Farrer MJ (2010) LRRK2 and Parkinson disease. Arch Neurol 67:542–547Google Scholar
  16. 16.
    Lewis PA, Greggio E, Beilina A et al (2007) The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 357:668–671CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sen S, Webber PJ, West AB (2009) Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem 284:36346–36356CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Berger Z, Smith KA, LaVoie MJ (2010) Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemist 49:5511–5523CrossRefGoogle Scholar
  19. 19.
    Nichols RJ, Dzamko N, Morrice NA et al (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J 430:393–404CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Civiero L, Vancraenenbroeck R, Belluzzi E et al (2012) Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS One 7:e43472CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    James NG, Digman MA, Gratton E et al (2012) Number and brightness analysis of LRRK2 oligomerization in live cells. Biophys J 102:L41–L43CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bahnassawy L, Nicklas S, Palm T et al (2013) The Parkinson’s disease-associated LRRK2 mutation R1441G inhibits neuronal differentiation of neural stem cells. Stem Cells Dev 22:2487–2496CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39CrossRefPubMedGoogle Scholar
  24. 24.
    Deng X, Dzamko N, Prescott A et al (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7:203–205CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reith AD, Bamborough P, Jandu K et al (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22:5625–5629CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Estrada AA, Liu X, Baker-Glenn C et al (2012) Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem 55:9416–9433CrossRefPubMedGoogle Scholar
  27. 27.
    Kavanagh ME, Doddareddy MR, Kassiou M (2013) The development of CNS-active LRRK2 inhibitors using property-directed optimisation. Bioorg Med Chem Lett 23:3690–3696CrossRefPubMedGoogle Scholar
  28. 28.
    Davies P, Hinkle KM, Sukar NN et al (2013) Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J 453:101–113CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Estrada AA, Chan BK, Baker-Glenn C et al (2014) Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem 57:921–936CrossRefPubMedGoogle Scholar
  30. 30.
    Henderson JL, Kormos BL, Hayward MM et al (2015) Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2, 3-d]pyrimidin-5-yl] benzonitrile (Pf-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem 58:419–432CrossRefPubMedGoogle Scholar
  31. 31.
    Daher JP, Abdelmotilib HA, Hu X et al (2015) Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. J Biol Chem 290:19433–19444CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Koshibu K, van Asperen J, Gerets H et al (2015) Alternative to LRRK2-IN-1 for pharmacological studies of Parkinson’s disease. Pharmacology 96:240–247CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Z, Galemmo RA Jr, Fraser KB et al (2014) Unique functional and structural properties of the LRRK2 protein ATP-binding pocket. J Biol Chem 289:32937–32951CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gray NS, Waller D, Choi HG et al (2014) Pyrimido-diazepinone compounds and methods of treating disorders. Patent: WO 2014145909:A3Google Scholar
  35. 35.
    Dzamko N, Deak M, Hentati F et al (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430:405–413CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77CrossRefPubMedGoogle Scholar
  37. 37.
    Giesert F, Hofmann A, Buerger A et al (2013) Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS One 8:e63778CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    West AB, Cowell RM, Daher JP et al (2014) Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol 522:2465–2480CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dorval V, Mandemakers W, Jolivette F et al (2014) Gene and MicroRNA transcriptome analysis of Parkinson’s related LRRK2 mouse models. PLoS One 9:e85510CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Maekawa T, Kubo M, Yokoyama I et al (2010) Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 392:431–435CrossRefPubMedGoogle Scholar
  41. 41.
    Taymans JM, Van den Haute C, Baekelandt V (2006) Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem 98:951–961CrossRefPubMedGoogle Scholar
  42. 42.
    Miklossy J, Arai T, Guo JP et al (2006) LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol 65:953–963CrossRefPubMedGoogle Scholar
  43. 43.
    Westerlund M, Belin AC, Anvret A et al (2008) Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: implications for Parkinson’s disease. Neuroscience 152:429–436CrossRefPubMedGoogle Scholar
  44. 44.
    Herzig MC, Kolly C, Persohn E et al (2010) LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 20:4209–4223CrossRefGoogle Scholar
  45. 45.
    Baptista MA, Dave KD, Frasier MA et al (2012) Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS One 8:e80705CrossRefGoogle Scholar
  46. 46.
    Tong Y, Giaime E, Yamaguchi H et al (2012) Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fell MJ, Mirescu C, Basu K et al (2015) MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J Pharmacol Exp Ther 355:397–409CrossRefPubMedGoogle Scholar
  48. 48.
    Joyce JN, Sapp DW, Marshall JF (1986) Human striatal dopamine receptors are organized in compartments. Proc Nat Acad Sci USA 83:8002–8006CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hall H, Sedvall G, Magnusson O et al (1994) Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacol 11:245–256CrossRefGoogle Scholar
  50. 50.
    Quirion R, Pilapil C, Allaoua H et al (1995) Autoradiographic distribution of multiple opioid, sigma and phencyclidine receptor binding sites in the human brain. In: Biegon A, Volkow ND (eds) ISBN: 084937653XSites of drug action in the human brain, pp 117–141Google Scholar
  51. 51.
    Kulkarni AD, Patel HM, Surana SJ et al (2016) Brain-blood ratio: implications in brain drug delivery. Expert Opin Drug Deliv 13:85–92CrossRefPubMedGoogle Scholar
  52. 52.
    Convents A, De Keyser J, De Backer JP et al (1989) [3H] rauwolscine labels alpha 2-adrenoceptors and 5-HT1A receptors in human cerebral cortex. Eur J Pharmacol 159(3):307–310CrossRefPubMedGoogle Scholar
  53. 53.
    Durany N, Zoechling R, Boissl KW et al (2000) Human post-mortem striatal α4β2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson's syndrome. Neurosci Lett 287:109–112CrossRefPubMedGoogle Scholar
  54. 54.
    Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22CrossRefPubMedGoogle Scholar
  55. 55.
    Thermofisher Tools and protocols on kinase basic module—theory:
  56. 56.
    Hicks JW, VanBrocklin HF, Wilson AA et al (2010) Radiolabeled small molecule protein kinase inhibitors for imaging with PET or SPECT. Molecules 15:8260–8278CrossRefPubMedGoogle Scholar
  57. 57.
    Sun J, Cai L, Zhang K et al (2014) A pilot study on EGFR-targeted molecular imaging of PET/CT with 11C-PD153035 in human gliomas. Clin Nucl Med 39:e20–e26CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.Department of RadiologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of PsychiatryNew York University School of MedicineNew YorkUSA
  3. 3.Novandi Chemistry ABSödertäljeSweden
  4. 4.METIS LaboratoriesNew YorkUSA

Personalised recommendations